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Executive Summary

As society and technology grow, organizations expand and construct new networks to sustain their
development. Within this context, integrity, robustness, reliability, and resiliency of infrastructure net-
works are vital to the economy, security and well-being of any country. Studying networks’ performance
and their interaction is important to support decisions about risk mitigation, future development, in-
vestments and maintenance policies so that their operation can be made more efficient and reliable.
This study focuses on the problem of transportation networks but the conceptual discussions and
the models described can be extended to better understand the performance of other infrastructure
systems.
Faced with threats caused by natural and man-made hazards, transportation infrastructure network

management should look for new ways of modeling the behavior of individual components and their
interaction. First, a better understanding of the network performance can be achieved by describing
the network as a system i.e., a set of elements interconnected with a purpose (emergent property of the
system). Identifying and defining the purpose of a network is key to the solution. In transportation
networks the target of the analysis might be connectivity (the ability to travel between two sites)
or an overall network performance (e.g., total travel times within the network). Secondly, it is also
important to describe and model accurately the dynamic interaction between the system (network) and
the imposed demands. Internal and external demands are changes in the normal operation conditions
that may cause a negative impact on the system. In transportation networks an internal demand is
traffic congestion or pavement deterioration; an external demand is a hurricane or a terrorist attack.
Finally, models about the operation and the network’s relationship with the environment should provide
information that supports decisions for hazard management strategies and for optimizing resource
allocation.
The objective of this project is to study new ways of understanding the performance of transporta-

tion infrastructure network systems. The study focuses on the performance of both the entire network
and the individual network components. The model developed can be used to support and design
efficient risk management strategies that can ensure the acceptable performance of the network (e.g.,
in terms of expected damage or recovery times) when subject to different hazard types. The case of
the main transportation network of Texas was chosen to demonstrate the applicability of the model.
This work is divided in two parts. First, the problem of network modeling by using a systems

approach and its potential applications are presented in Chapters 2 and 3. This approach is different
from most existing modeling techniques in that networks will not be modeled as a collection of separate
elements but rather as a dynamic structured functional unit. It uses hierarchical structures in order to
better represent the network system allowing a more efficient use of information for decision making
when exposed to multiple hazards. In the second part (Chapter 4), a comprehensive probabilistic
time-dependent model of the lifetime performance and reliability of individual components in the
network is developed and integrated into the analysis. Structural deterioration is modeled as a result
of the combined action of progressive degradation (e.g., corrosion, fatigue) and sudden events (e.g.,
earthquakes). Probabilistic models are used as input for a reliability cost-based optimization model.
Results are compared with similar models showing the importance of taking into account the damage
history when studying the life-cycle of infrastructure systems.
The results of the study show that a systems approach to understanding the problem of trans-

portation networks provides valuable information that cannot be acquired by traditional "mechanistic"
models. By taking into account the internal relationships between network elements, both resource al-
location and risk preventive strategies can be improved. In addition, the study of network components
shows the importance of incorporating and integrating different deteriorating processes of infrastruc-
ture components (e.g., bridges) to planning and operational strategies. In conclusion, it is argued that
better decisions about resource allocation for risk mitigation, development and operational planning
can be obtained by integrating a systems approach to network modeling with the details of network
component performance.
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Chapter 1

Description of the project

1.1 The problem
Integrity, robustness, reliability, and resilience of infrastructure networks are vital to the economy,
security and well-being of any country. Studying networks’ performance and their interaction is im-
portant to support decisions about risk mitigation, future development, investments and maintenance
policies so that their operation can be made more efficient and reliable. Among all different types
of networks, the performance of transportation networks is a major issue in most countries around
the world. Transportation networks deteriorate as a result of environmental factors (e.g., chloride
ingress) and operation (e.g., pavement deterioration, traffic congestion). They might be also exposed
to rare extreme events such as earthquakes, hurricanes, accidental blasts and terrorist attacks. Within
this context, and considering the importance and cost of building and maintaining transportation in-
frastructure systems, resource allocation and operational decisions become paramount (Figure 1.1).
It is proposed in this document that for a better understanding and management of transportation
infrastructure networks it is important to work towards: (1) understanding the network performance
as a system; (2) modeling the dynamic interaction between the network and the external and internal
demands; and (3) defining hazard management strategies to optimize resource allocation.

1.2 Objectives
The objective of the project is to develop a model of the performance of infrastructure transportation
network systems that can be used to design efficient risk management strategies to ensure acceptable
performance when subject to the action of individual, simultaneous, or sequential hazards. The project
focuses on the performance of both the entire network as a system and of the individual components.
The main objectives of this study are:

1. provide an overview of the modeling problems and needs of transportation infrastructure systems
and components;

2. develop a model that can be used to estimate the impact of multiple hazards on a transportation
infrastructure network. The transportation network of Texas is used to demonstrate the potential
applicability of the model; and

3. study the infrastructure operational problems and needs of transportation network components
(e.g., bridges) through a probabilistic model of the life-cycle performance of components.

11
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Figure 1.1: Description of the project components.

1.3 Overview
In this project, transportation networks are modeled hierarchically, in order to model different network
characteristics. Chapter 2 will describe the systems approach to modeling networks. Studying the per-
formance of infrastructure networks using a systems approach is different from most existing modeling
techniques in that networks will not be modeled as a collection of separate elements but rather as
a dynamic structured functional unit. In systems thinking, systems are represented hierarchically in
order to deal with their complexity. For instance, it is known that with the exception of very small net-
works with certain geometric characteristics, close form solutions to problems such as connectivity and
flow efficiency cannot be found. Given these computational difficulties, new approaches are based on
detecting “community” structures in networks. These methods define rules for clustering the network
vertices organizing them at different levels within a hierarchical structure allowing a systemic approach
to the problem. Chapter 2 focuses on describing how networks can be described hierarchically and the
clustering methods that can be used for the particular case of transportation infrastructure networks.
In Chapter 3, the practical application of the model is described with some illustrative and real

examples that use the main transportation network of Texas as a case study. A decision support tool
developed in Matlab R° is also described, and various cases of different hazard events are analyzed.
Finally, the impact of Hurricane Ike on Texas is used as an example of the usefulness of the proposed
model.
The performance of individual network elements is studied in Chapter 4. The focus will be on the

life-cycle performance of infrastructure components (e.g., bridge structures). The model developed
considers structural deterioration as a result of the combined action of progressive degradation (e.g.,
corrosion, fatigue) and sudden events (e.g., earthquakes). Structural reliability is evaluated against
prescribed design and operation thresholds that can be used to establish limit states or intervention
policies. Finally, probabilistic models are used as input for a reliability cost-based optimization model.

12



Chapter 2

System modeling of transportation
networks

2.1 Introduction
Lifeline systems such as power and energy distribution, transportation, communications, internet and
many others are essential for modern life. The world can be described as the multiple interactions of
dynamic and diverse networks. Studying networks’ behavior and their interaction is important since
the results can be used to support decisions about risk mitigation, future developments, investments
and maintenance policies so that the network operation can be made more efficient and reliable. Among
all different types of networks, transportation networks are critical in most countries around the world.
Transportation networks deteriorate as a result of environmental factors and operation. They are also
exposed to rare extreme events such as earthquakes, hurricanes and terrorist attacks, which make
resource allocation and operational decisions paramount.
This chapter presents a systems approach to model the performance of infrastructure networks.

Systems thinking has been used as a modeling strategy in other areas of civil engineering, for instance,
to model structural vulnerability and robustness of structures (Agarwal et al., 2003 [1]). The proposed
model will assess the form (topology) of the network in order to develop a hierarchical description of
the system. The hierarchy is obtained by unraveling the system progressively following state of the
art network clustering algorithms. The resulting hierarchy is used to better understand the system’s
performance and as a tool to support a wide variety of decisions. The proposed approach can be
extended to modeling other network types.

2.2 Network classification
Network modeling requires first defining analysis criteria. For transportation networks, the most
common criteria are form and flow. Models that focus on the form of the network concentrate on
changes in its structure (e.g., geometry) and address problems such as connectivity failure. On the
other hand, models that focus on flow (e.g., traffic) deal with problems of cost and efficiency. Flow,
in a general sense, describes whatever travels through a network. Form and flow are related concepts
although the correlation may be difficult to assess explicitly.
Networks can be classified in terms of form as (1) centered systems (e.g., communications network);

(2) node diverted systems (e.g., transportation network); or (3) as a combination of the above. In the
first case, a set of nodes are highly connected in comparison with all other vertices, and most paths
between nodes include them. In the second case, connectivity (affinity) is evenly distributed throughout
the vertices. In terms of flow, networks can be classified as (1) permanently loaded (e.g., electricity
distribution system); (2) unidirectional (e.g., water supply system); (3) multi-directional (e.g., road
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transport network); or (4) energy dissipation system (e.g., biological systems). Permanently loaded
networks are those where energy is stored within the system and neither the concept of energy flow
nor directionality exists. In the second case, energy flows only in one general or local direction, for
instance, a water supply system working by gravity. Most transport systems belong to the third case
where energy can flow bidirectionally between the system nodes. Finally, there exists the particular
case where energy flow may exit or enter into the system permanently through both nodes and links
by, for instance, a diffusion processes. Additional network types can be identified in areas outside civil
engineering (e.g., social sciences) (Newman, 2003 [45]).

2.3 Modeling networks as graphs
A network system is usually modeled as a graphG(V,E)where V is the set of nodes V = {v1, v2, . . . , vn}
and E the set of connecting links (also called arcs), E = {e1, e2, . . . en}. Transportation networks are
usually modeled taking V as a set of points of interest (e.g., cities, special facilities like hospitals) and
E as the connecting links. The condition of a network is usually modeled in terms of the state of
individual links, commonly evaluated as either failure or not-failure. This means that partial failure
conditions are not taken into consideration. Then the state vector of the network at time t is X(t) =
{x1(t), x2(t), . . . , xn(t)}, which denotes the state vector of G(V,E) such that xi(t) = 1 if ei is operating
and xi(t) = 0 otherwise. The purpose of a network can be described by a function g(). Then, any
functionality analysis should address the performance of g()(e.g., reliability assessment). In most
studies, g() is described either as a connectivity function or as a travel cost function.
With the exception of very small networks with certain geometric characteristics, close form so-

lutions to problems such as connectivity and flow efficiency cannot be found. Studies that require
considering all possible failure scenarios lead to a problem known to be NP -hard (Nondeterministic
Polynomial time hard) due to the enormous number of possible states that have to be considered (a
network with n links has 2n possible states). In other words, this means that it is most unlikely that
there is a general algorithm that can compute all possible cases in polynomial time. Several approaches
have been proposed to manage this problem. For example, Konak et al., 2004 [37] divided alternative
approaches in three groups: (1) state-based techniques; (2) sample space arc permutations; and (3)
bounding techniques. The first approach focuses on efficient methods for state vector generation or
on introducing negative correlation between sample state vectors. The second method uses sample
space arc permutations instead of the original sample space. The third group includes stratified and
important sampling variance reduction techniques.

2.4 Properties and performance indicators
Characterizing networks is essential to building a mathematical model of the network performance.
Two broad approaches have been proposed. The first focuses on statistical characterization of the
network structure based mainly on topological indicators. The second approach, which has been used
extensively in biological and social sciences, focuses on the properties of groups and subgroups within
the network (Clausset et al., 2006 [14]).
Statistic-based measures include:

1. degree distribution;

2. maximum degree (Aiello et al., 2000 [2], Cohen et al., 2000 [15]);

3. degree correlations;

4. centrality indices (Wasserman and Faust, 1994 [70], Scott, 2000 [61]);

5. the inverse characteristic path length; and
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6. distribution of the average minimum (maximum) path of a graph.

Statistic-based measures are mostly based on topological aspects, within which the degree distri-
bution has become the most popular measure. If the degree d(v) of a vertex v ∈ V is defined as the
number of links (i.e., edges), n, connected to that vertex, it is possible to build a histogram containing
the fraction of vertices in the network that have degree k, i.e., pk. Then, the degree distribution of
a network is P (k) = P (n < k) =

Pk
i=0 pi. Degree correlations describe how vertices with different

degrees associate. The inverse characteristic path length is a global indicator of efficiency in network
connectivity. It is the mean of the means of the shortest path lengths connecting each vertex to all
other vertices (Duenias-Osorio et al., 2007 [18], Holme et. al., 2002 [30] and Newman, 2003 [45]). The
average minimum path of a graph is the mean length of the minimum paths.
The second approach for network characterization requires taking into account the network dy-

namics but also many other aspects that go beyond the topology and flow (Duenias-Osorio et al.,
2007 [18]). It is widely known that networks have internal structures, which are difficult to capture by
simple indicators and some of them are difficult to identify (Newman and Leicht, 2007 [47]). Finding
groups and subgroups is equivalent to building a hierarchical representation of the networks, which is
the core of systems thinking.

2.5 Systems approach
A systems approach to any problem is built on the idea that a system cannot be modeled as a collection
of separate elements but rather as a dynamic structured functional unit.
A system is defined as a set of interacting components (subsystems) called holons, organized hi-

erarchically. A holon is both a whole and a part at the same time (Blockley and Godfrey, 2000 [8]).
Holons are obtained by desegregation of the subsystem in the upper level of the hierarchy. A hierarchy
structure of a system is a dynamic form of organizing information. It is not the same as a fault tree
nor should it be interpreted as a rigid structure (Blockley and Godfrey, 2000 [10]). A hierarchical
representation of a system requires a logical and structured way of identifying subsystems and their
relationships at every level. A hierarchy is used to describe different levels of description of the system.
In an upper level, holons are more general, have greater scope and are less precisely defined. In the
lower layer, they have less scope and are more precisely defined. Holons have emergent properties that
result from the interaction (cooperation) of the component holons (i.e., holons in an immediate lower
level) but are not properties of the constitutive holons.
A systems approach helps to describe complex systems simply by providing a better representation

of the problem. It provides the means to identify processes, properties and characteristics of a system
at different scales (levels of precision). This is useful for supporting decisions at different levels and to
make a more efficient assignment of resources.
Following a systems approach, network analysis should include four key aspects:

1. defining the network, i.e., links and nodes with their respective attributes;

2. defining the criteria for the analysis i.e., performance function g(), e.g., form (connectivity),
resistance (strength);

3. describing the network system in a hierarchical manner by successive clustering; and

4. establishing a metric to assess the consequences of a loss in g(), e.g., economic consequences
caused by excessive travel times.
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2.6 Building network hierarchies

2.6.1 Clustering

A systems approach to network modeling requires the construction of a hierarchical structure describing
the system at different levels of definition. In turn, this requires the development of a strategy for the
identification of subsystems (holons). The problem of network separation has been studied for some
decades now in many fields that cover a wide variety of networks, which include physical, biological and
sociological among many others. Identifying patterns within the network around which communities
of elements can be grouped is useful to simplify large and complex problems and essential to construct
the hierarchical structure needed in systems thinking.
Clustering is essential for building hierarchical structures. A cluster is defined as a group of same or

similar elements gathered or occurring closely together. Thus explicit clustering rules, which depend
upon the problem at hand, are required; defining these rules is called cluster analysis. Cluster analysis
can be defined as the mathematical study of methods for reorganizing natural groups within classes
of entities (van Dongen, 2000 [68]). Cluster analysis is concerned with identifying groups of objects
(people, things, events, etc.) so that the degree of association is strong between members of the same
group and weak between members of different clusters (see also Lattimore et al., 2005 [38]). Reliable
clustering of complex infrastructure networks might provide insights into the functioning of individual
elements and the relationships within these groups of elements.

2.6.2 Clustering methods

The purpose of network clustering is to identify k groups of elements (vertices), while minimizing the
number of edges that run between vertices in different groups.

Definition 1 (Alpert et al., 1999 [4]): A graph representation of a network is kpartitioned if there is
a set of non-empty clusters P k = {C1, C2, ..., Ck} such that each vi ∈ V is a member of exactly one
Ch 1 ≤ h ≤ k.

Hierarchical clustering is defined in this study as the process by which a network is divided succes-
sively into clusters and subclusters. The process is carried out until the network cannot be subdivided
further into smaller components. The hierarchical clustering will lead to a system representation in
the form of a hierarchical tree, also called a dendogram (from Greek dendron "tree"-gramma "draw-
ing"). The concept of hierarchical representation of a system has been widely discussed for hard (e.g.,
infrastructure) and soft (e.g., sociological) systems (Blockley and Godfrey, 2000 [10] and Scott, 2000
[61]).
There is not a standard approach to construct the hierarchy since it depends on the context, the

type of network, the objective of the study and the computational cost. However, two main partitioning
methods can be distinguished as: (1) bipartitioning; and (2) multi-partitioning. The first approach
focuses on a successive bipartitioning of the network at every level. On the other hand, in the case
of multiple partitions there is not a restriction in the number of clusters at every level. Hierarchical
algorithms can be constructed "bottom-up" or "top-down." The former, also called agglomerative,
starts with individual elements (e.g., vertices) merging new elements sucessively into larger clusters
until a stopping criterion is reached (Peng and Xia, 2005 [52]). The latter (i.e., divisive) divides the
whole data set sucessively into smaller clusters.
Existing partitional methods vary widely. The main difficulty of these methods is that it is usually

necessary to make strong assumptions about the internal structure of the network, which is unknown.
Then there are supervised and unsupervised approaches to the problem. In supervised clustering
algorithms the required number of clusters is defined beforehand, and the algorithm looks for the
optimal partition based on a predefined object function. Some examples of supervised algorithms are
the k -means clustering method (McQueen, 1968 [40]) and the NJW method (Ng et al., 2001 [48]).
Most often, it is impossible to give a reasonable estimate for the expected number of clusters. In these
cases unsupervised clustering approaches such as the MCL algorithm (see section 2.7) are required.
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2.6.3 Hierarchical clustering algorithms

Conceptually, most hierarchical clustering approaches are based on developing a similarity measuremij

between pairs of vertices (vi,vj) and a iterative process of vertex grouping up to a point where minimum
or maximum similarity value is achieved. For instance, two well-known methods are the single linkage
and the complete linkage method (Scott, 2000 [61]). In sociology (Newman, 2004 [46]), similarity is
measured through the so-called structural equivalence. Two points are structural equivalent if they
have the same set of neighbors. Similarity is usually a measure of the "distance" between two vertices.
Some examples are the Euclidean distance or the Pearson correlation between columns (or rows) of
the adjacency matrix (Wasserman and Faust, 1994 [70]). The definition of the similarity function
defines the clustering process. Then the same network may have different clusters depending upon the
similarity function selected.

Original space separation

Bisection For the case of bipartitioning, two algorithms have dominated the literature: the Kernighan—
Lin and the k -means (with k = 2) algorithm (Newman, 2004 [46]). The Kernighan-Lin algorithm
optimizes the number of within- and between-community edges using a greedy algorithm (Newman,
2004 [46]). Any algorithm is said to be greedy if it recursively finds local optimum, by using a benefit
(also called feasible) function, and among them determines the global optimum based on an overall
objective function. The Kernighan-Lin algorithm optimizes the similarity function by swapping ver-
tices between two initially defined clusters. This method is highly dependent on the size and selection
of initial groups and can be applied only for the bisection case. Its use in complex networks, where
the hidden data structure is not known, has to be managed carefully.
On the other hand, the so-called k-means method (McQueen, 1968 [40]) has been used extensively

alone and in combination with other methods. The algorithm requires as input the number of clusters
k; which for the case of bisection is k = 2. The algorithm for any case is as follows:

1. Select the number of clusters, k, for a data set D.

2. Choose the k-cluster centers at random in a domain containing all the points.

3. Compute the distance of each point to every cluster center (e.g., by using Euclidean distance).

4. Assign every point to the closet cluster center (i.e., min. distance).

5. Recompute the cluster centers using the current cluster memberships.

6. If a convergence criterion is met, stop; otherwise go to step 3.

Multiple partitions As mentioned before, the k-means algorithm can be used for multiple partitions
by selecting k > 2. This method is very reliable and has been used extensively, alone and in conjunction
with other methods. Within the category of unsupervised clustering algorithms, an efficient algorithm
is the so-called Markov Cluster Algorithm (MCL). It is a fast and scalable algorithm for graphs based
on simulation of (stochastic) flow in graphs (van Dongen, 2000 [68]). This algorithm will be described
later in section 2.7.1.

Spectral separation

Bisection Spectral clustering has emerged recently as a popular clustering method that uses eigen-
vectors of a matrix derived from the data. Spectral separation techniques are based on the characteristic
or spectral space imbedded within the original network structure. The first and well known case is the
spectral bisection method, where separation is not carried out in the real space but in a new space
defined by the eigen values of the Laplacian of the connectivity (adjacency or affinity) matrix. The
Laplacian of an undirected graph G is defined as: Lp = D − A, where D is the diagonal matrix of
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vertex degrees (Dii =
P

j Eij) and A is the connectivity matrix with Eii = 0. Note that for the
Laplacian matrix L, all rows and columns add to zero; therefore, the vector 1 = (1, 1, 1...) is always an
eigenvector with eigen value zero. It can be proved that by considering the eigen vector corresponding
to the second lowest eigen value, i.e., Λ2, it is possible to separate the vertices in two groups S1 and S2
as follows: vi ∈ S1 if Λ2(vi) > 0; and vi ∈ S2 if Λ2(vi) < 0. The second eigen value λ2 is usually called
the algebraic connectivity of the graph; smaller values correspond to better partitions. The spectral
bisection method works well where communities can be separated easily, but as networks become very
complex the quality of separation is not evident. Newman, 2004 [46] argues that partitioning into
larger communities by successive bisection does not always give satisfactory results.

Multiple partitions Several attempts have been made to extend spectral bipartitioning method to
a multiple-eigen vector partitioning (Barnes, 1982 [8], Rendel and Wolkowicz, 1995 [57] and Hadley et
al., 1992 [27]). However, methods based on iterative approaches similar to the k-means have proven
to be more effective. A major drawback to k-means is that it cannot separate clusters that are non-
linearly separable in input space. In order to solve this problem, some algorithms use k-means in a
higher-dimensional feature space, which is defined after mapping the elements by using a nonlinear
function (kernel). In these cases, data are partitioned by linear separators in the new space. Other
approaches use the so-called spectral clustering algorithms, which use the eigen vectors of an affinity
matrix to obtain a clustering of the data (Dhillon et al., 2004 [17]). Recently some approaches combine
the main characteristics of both approaches resulting in very reliable separation methods (e.g., Ng et
al., 2001 [48], Dhillon et al., 2004 [17] and Kanungo et. al., 2002 [33]). One such method, the NJW
algorithm (Ng et al., 2001 [48]) will be described and some consideration for its applicability and
extension will be presented in section 2.7.2.

2.7 Selected algorithms for modeling transportation networks
Systems modeling of transportation networks requires a multiple partition algorithm. However, the
number of clusters at every level is not fixed; on the contrary, it depends on the inherent structure
of the network. Therefore two partition methods were selected for this study: (1) the MCL method;
and (2) the NJW method. MCL performs an unsupervised search of clusters at every level, while in
NJW the number of clusters required has to be provided. In addition, MCL performs the calculation
in the original space, while NJW uses the characteristic space defined by the first k-eigen vectors of
the affinity matrix. Both algorithms are presented in the next sections.

2.7.1 MCL clustering algorithm

Description

The MCL algorithm finds cluster structure in graphs by a mathematical bootstrapping procedure. This
is achieved without any prior knowledge of the graph’s cluster structure. The MCL clustering process
consists of dividing the node set of a graph into natural groups with respect to the edge relationship.
In an analogy to transportation, the MCL method is based on the following assumptions for clustering:

1. for a traveler, there are many different ways of traveling between any two points within the same
cluster and only a few ways if they belong to different clusters;

2. if a traveler drives randomly he/she will remain within the same cluster for a long time; and

3. links connecting clusters are likely to be in all shortest paths between nodes located in different
clusters.

The MCL algorithm simulates random walks (i.e., flow) within a graph by alternation of two
processes: 1) expansion and 2) inflation. The combined iterative process of expansion and inflation

18



reveals the presence of innate cluster structures in the input graph. The MCL process causes flow to
spread out within natural clusters and to evaporate in between different clusters. The mathematics
associated with the MCL process shows that there is an intrinsic relationship between the MCL process
and cluster structure in graphs. This is very valuable given the many heuristic approaches in cluster
analysis.
Expansion models the spreading out of flow; it becomes more homogeneous. In other words, it is

used to compute random walks of higher length (i.e., many steps). Since higher length paths are more
common within clusters than between different clusters, the probabilities associated with traveling
between node pairs within the same cluster are expected to be larger as there are many ways of going
from one to the other. Expansion is carried out by squaring a stochastic matrix. On the other hand,
inflation models the contraction of flow; it becomes thicker in regions of higher current and thinner in
regions of lower current. Inflation boosts the probabilities of walks within the same cluster and will
demote inter-cluster walks. Expansion and inflation operators are alternated. Each operator takes the
Markov matrix computed by the preceding operator to compute a new Markov matrix, which is passed
back to the previous operator (van Dongen, 2000 [68]).
Sequential alternating expansion and inflation results in the separation of the graph into different

sets of elements, which are interpreted as clusters. The stopping criterion is reached once the Markov
probability matrix stabilizes. An equilibrium state takes the form of a so-called doubly idempotent
matrix, i.e., a matrix that does not change with further expansion or inflation steps. The graph
associated with such a matrix consists of different connected directed components. Each component
is interpreted as a cluster and has a star-like form, with one attractor in the centre and arcs going
from all nodes of that component to the attractor. In theory, attractor systems with more than one
attractor may occur (these do not change the cluster interpretation). Also, nodes may exist that are
connected to different stars, which is interpreted as cluster overlap or as nodes that belong to multiple
clusters.
The MCL algorithm is as follows (van Dongen, 2000 [68]):

1. Construct the affinity matrix A ∈ Rn×n such that Aij = si − sj if there is a connection between
nodes (data points) i and j, and Aij = 0 otherwise.

2. Define the diagonal matrix D ∈ Rn×n such that Dii=
Pn

k=1Aik.

3. Construct the associated Markov graph as TG = AD−1; and T1 = TG.

4. k = 1.

5. T2k = f(T2k−1).

6. T2k+1 = Γr(T2k).

7. Check convergence criteria (i.e., T2k−1 →idempotent). If convergence is not achieved, k = k + 1
and go back to step 5.

8. Use T2k−1 to create clusters.

In step 1, the affinity (connectivity) matrix of a graph G is created, i.e., matrix A. As mentioned
before, matrix A indicates the existence of connectivity between any pair of nodes i and j, i.e., Aij .
Connectivity may be described as the existence or not of a link and it may as well include the cost
of such a link (e.g., travel time). In step 2, the degree of every vertex is computed and placed in a
diagonal matrix D. In step 3, the matrix TG corresponds to a new graph G0 called the associated
Markov graph of G. The directed weight function of G0 is called the localized interpretation of the
weight function of G. In this transformation the value (TG)ij represents the level of attraction between
vertices i and j only in the context of the other values in the column. This is also called a column
stochastic matrix, which is a non-negative matrix within which each column adds to 1.
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The process that follows in steps 4 to 7 is the sequential alternation of expansion and inflation until
convergence is reached. Expansion can be made in different ways according to a function f(T2k−1).
Afterwards, inflation is carried out by taking the Hadamard power of a matrix (taking powers entry
wise), followed by a scaling step, such that the resulting matrix is stochastic again, i.e., the matrix
elements (on each column) correspond to probability values. In practice, it means applying the operator
Γ to the expanded matrix, i.e., T2k+1 = Γ(T2k).Then, If T ∈ Rn×n and r > 1,

Γr : Rk×c → Rk×c;Γr(T )ij =
(Tij)

rPk
i=1(Tij)

r
(2.1)

Note that inflation changes the probabilities associated with the random walks departing from
one particular node (corresponding with a matrix column) by favoring more probable walks over less
probable walks. It is also important to note that a matrix does not have to be square. The parameter
r is usually assumed to be 2 but there are no specific restrictions and it is mainly context dependent.
Values of 0 ≤ r ≤ 1 increase the homogeneity of the argument probability vector or matrix; while
Values of r > 1 reduces the homogeneity. Negative values of r invert the ordering (van Dongen,
2000 [68]). Convergence is evaluated at every iteration by checking that the matrix is idempotent
under matrix multiplication (i.e., it has stabilized); this is also called a doubly idempotent matrix.
Idempotence is a property of mathematical operations in which the successive application of the same
operation yields the same result.
The identification of clusters is carried out in step 8. The final matrix T2k+1, which is idempotent

at the end of the process, can be mapped with the associated graph G. In matrix T2k+1 every column
corresponds to a vertex and all rows j of T2k+1, with j 6= 0, are the cluster attractors and contain the
cluster component vertices. Every cluster has at least one element that is unique to the cluster but it
is possible that some vertices may belong to several clusters. This problem usually can be overcome by
merging clusters with shared elements. Further discussion on this issue can be found in Van Dongen,
2000 [68].

2.7.2 NJW clustering algorithm

The NJW algorithm was proposed by Ng et. al., 2001 [48]. It is an efficient spectral clustering method
that uses the first k eigen values of the connectivity matrix. The key to solution is to perform the
separation in the Rn×n space and not in the real space. The NJW is as follows: consider a set of points
S = {s1, s2, ..., sn} in Rl that will be clustered into k subsets. Then,

1. Construct the affinity matrix A ∈ Rn×n such that Aij = si − sj if there is a connection between
nodes (data points) i and j, and Aij = 0 otherwise.

2. Recalculate the affinity matrix by using the appropriate nonlinear function (i.e., kernel). For
example, for A ∈ Rn×n, Aij = exp (− ksi − sjk2 /2σ2ij) and Aii = 0.

3. Define the diagonal matrix D ∈ Rn×n such that Dii=
Pn

k=1Aik.

4. Calculate the matrix L = D−1/2AD−1/2.

5. Define the matrix X ∈ Rn×k as the k-largest eigen vectors of L (organized by columns).

6. Compute the matrix Y ∈ Rn×k by normalizing the rows of matrixX; i.e., Yij= Xij/
³Pk

k=1X
2
ik

´1/2
.

7. Treating each row of Y as a point in Rk, cluster them into k groups via k-means or any other
algorithm.

8. Assign the original points si to the cluster of yi.
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For transportation networks, for instance, Aij = si−sj (step 1) corresponds to the cost of travelling
between nodes i and j. Step 2 is a way of improving clustering by carrying out a nonlinear mapping
of the original data set (input space) into a higher dimensional feature space. This process helps to
construct clusters that are not linearly separable in the original space. This non-liner mapping can
be performed by selecting the appropriate kernel functions. The most popular kernel function is the
Gaussian kernel, i.e., κ(a, b) = exp(− ka− bk2 /2σ2); where σ2 is usually called the scaling parameter,
which controls the speed at which the affinity (i.e., connectivity) decreases with the distance between a
and b. Others kernels such as the polynomial (κ(a, b) = (a·b+c)2) or Sigmoid (κ(a, b) = tanh(a·b)c+α)
are also used.
Step 3 places in the diagonal the degree of every vertex once the kernel has been applied. In step

4, the matrix L can also be computed as the Laplacian matrix, i.e., Lp = D − A. The difference
between L and Lp is in the sign of the eigen values but not in the actual eigen vectors. Step 5
defines the new space where separation will be carried out. This space consists of k-eigen vectors of
matrix L, which, in this case, are the largest orthogonal eigen vectors. As the number of eigen vectors
considered increases, more noise is introduced in the system and the clustering becomes more difficult
(Pentney and Meila, 2005 [53]). In the new space, the coordinates of every vertex, vi, are defined by
Xvi = {x1vi , x2vi , ..., xkvi} where xjvi corresponds to the j component associated with the j eigen vector
that defines the kdimensional space. The k-means algorithm used for separation required in step 7
was already explained in section 1.6. Several methods along these lines have been proposed by Alpert
and Kahng, 1994 [3], Alpert et al., 1999 [4], Chang et al., 1994 [11], Ng et al., 2001 [48], Kanungo et
al., 2002 [33].
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Chapter 3

Network modeling implementation:
case of the Texas transportation
network system

3.1 Introduction
In this chapter, the network clustering algorithms presented in the previous chapter are implemented.
The model is applied to the transportation network of Texas as a case study. Texas is the second
largest state in the U.S. with an area of 696, 621 km2 and a population of 22.9 million distributed in
large cities such as Houston, Dallas and San Antonio as well as mid-size, but still large, urban centers
such as Austin and El Paso. The Gross State Product is the third among all U.S. states (US$ 880.9
billion) with an average annual growth of 4%, a GDP per capita of US$ 38, 536 and an average family
income at US$49, 086 (source: http://www.statemaster.com).

3.2 Hierarchical model
Texas has one the largest transportation networks in the U.S. Figure 3.1 presents a map of Texas in
which the main road network can be observed. The main statistics about Texas road infrastructure and
some global socioeconomic measures are shown in Table 3.1 (source: http://www.statemaster.com).
The case study presented in this chapter focuses on the main road transportation network of Texas,
which includes all interstate, primary and secondary roads. The network studied has a total length
of 16,065 miles (20% of the total road network) connecting 525 nodes that represent urban centers or
major intersections. A hierarchical representation of the system was developed based on the following
assumptions: (1) neither the road conditions nor the traffic flow characteristics within the network
were taken into account; (2) the cost of traveling was assumed linearly proportional to the distance,
i.e., Cij = αdij ; and (3) the cost of freight and private vehicles was not differentiated.
In order to construct a hierarchical representation of the network, a modified version of the MCL

algorithm (see Chapter 2) for clustering was used. Within this version, an additional step is added to
improve clustering separation. The complete algorithm is as follows:

1. Construct the affinity matrix A ∈ Rn×n such that Aij = si − sj if there is a connection between
nodes (data points) i and j, and Aij = 0 otherwise.

2. Recalculate the affinity matrix by using the appropriate nonlinear function (i.e., kernel). For
example, for A ∈ Rn×n, Aij = exp (− ksi − sjk2 /2σ2ij) and Aii = 0.
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Figure 3.1: Road network of Texas (source: Google EarthTM)

Item Texas US Total US Rank
Road Transportation statistics:
Total Mileage 83,852 912,024 -
Mileage (Very Good) 3,873 116,520 9
Mileage (Good) 18,853 256,146 1
Mileage (Fair) 41,781 372,002 1
Mileage (Mediocre) 9,254 101,482 2
Mileage (Poor) 10,091 65,874 6
Total Bridges 48,492 590,111 1
Toll Bridges 24 172 3
Bridges (Struct. Deficient) 2,777 79,526 9
Bridges (Funct. Obsolete) 7,543 80,232 1

Socioeconomic statistics:
Area 696,621 9,829,499 2
Population 22,859,968 300,737,973 2
GDP/capita 38,536 38,014 22

Table 3.1: Basic infrastructure and social statistics of Texas, USA.
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Level Cluster Modified MCL - parameters
r μL σL σL/μL α

2 Texas 1.10 20.76 30.62 1.47 0.15
3 S. Antonio 1.09 18.26 21.4 1.17 0.2

Houston 1.08 12.86 12.17 0.94 0.35
Dallas 1.06 12.20 11.88 0.97 0.35
Amarillo 1.08 19.39 21.72 1.12 0.2
El Paso 1.10 28.2 27.97 0.99 0.15

α = 1/2σ2ij

Table 3.2: Parameters of the model for the clustering process at every level in the hierarchy.

3. Define the diagonal matrix D ∈ Rn×n such that Dii=
Pn

k=1Aik.

4. Construct the associated Markov graph as TG = AD−1; and T1 = TG.

5. k = 1.

6. T2k = f(T2k−1).

7. T2k+1 = Γr(T2k).

8. Check convergence criteria (i.e., T2k−1 →idempotent). If convergence is not achieved k = k + 1
and go back to step 6.

9. Use T2k−1 to create clusters.

It is important to stress that step 2 in the modified algorithm is included to enhance the clustering
process. This modification uses the mean and standard deviation of the distances that a user will have
to travel from any vertex to the next in the network to be clustered, and is calculated as:

μL =
1

n

nX
i=1

Li; and σL =
1

n

vuut nX
i=1

(Li − μL)
2 (3.1)

where n is the total number of links and Li the length of link i. Note that this information changes
at every level, and therefore, appropriate values have to be chosen accordingly. These parameters for
levels 2 and 3 are shown in Table 3.2. It should be stressed that clusters group nodes only, and they do
not provide information about physical and spatial boundaries on the region. However, for illustration
purposes, the subclusters identified at levels 2 and 3 of the hierarchy are shown in Figures 3.2 and 3.3
by simple and heuristic interpolation. It can be observed that the results are intuitively consistent;
for instance, clusters are constructed around the Texas major urban centers. The number of clusters
describing the system at every level, from top to bottom were: 1, 5 (Figure 3.2), 28 (Figure 3.3), 95,
199, 284 and 313.

3.3 Impact index-based maps

3.3.1 Hazard impact index

In most hazard analyses the impact of any event is usually restricted to computing the direct losses.
Direct losses are estimated based on the structural response of the system components within the event
path or the event area of influence. However, for the particular case of infrastructure systems, the
impact of an event on a set of components (arcs or vertices) might have consequences that propagate
beyond the event’s area of influence. In the proposed model the impact of any event on a given element
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Figure 3.2: Subclusters identified by the modified MCL-algorithmin in the second level of the hierarchy.

Figure 3.3: Subclusters identified by the modified MCL-algorithm in the third level of the hierarchy.
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Figure 3.4: Network hierarchy representation, fictitious network and impact index assignment.

(e.g., node) of the network is a measure of the “closeness” of that element to the hazard event. This
closeness is twofold: in terms of the direct physical closeness and indirectly through the relationship
with other affected nodes. Then nodes that are not directly (physically) affected by the event will be
affected indirectly if they share the cluster with the nodes directly affected. While the direct impact
is fixed for a given event, the indirect impact is defined by the level in the hierarchy. As the analysis
moves up in the hierarchy, clusters are larger and more nodes share the clusters.
For a system described hierarchically, a parallel fictitious network can be constructed (Figure 3.4

and Figure 3.5). In the fictitious network, every element (node) corresponds to a cluster. Links between
nodes are parallel arrangements of the actual links connecting original nodes between clusters. At the
top of the fictitious hierarchy there is one single element that represents the whole network while, at
the bottom, clusters and original nodes are the same. Figure 3.5a and 3.5b show the complete network
(for simplicity only the nodes are shown) and the fictitious networks at levels 2 and 3 (nodes shown
as filled circles and links in dotted lines).

3.3.2 Construction of the impact index

In order to construct the impact index map, it is initially required to define the physical characteristics
of the event (extent and intensity) and the decision level L at which the analysis will be carried out.
Define CL = {C1, C2, . . . , Cq} as the set of all clusters at level L in the hierarchy. CL

A =
{C1, C2, . . . , Cp}, with p < q, is the subset of clusters containing nodes directly affected by the event
at level L (CL

A ⊆ CL). Then the index value assigned to every node ei with i = 1, 2, . . . k, in level L
is given by:

IL(ei) =

½
f(L,Φ) ·EI ei ∈ CL

A

0 ei /∈ CL
A

¾
(3.2)

where L is the level at which the element is evaluated and Φ is a vector of parameters and attributes
that characterize the network and its components, e.g., the number of levels considered in the analysis
(NL), the number of clusters at every level or any other relevant criteria for the decision. The function
f(L,Φ) can take values within the range [0, 1]; it provides the range of evaluation for the index. The
function f is maximum at the lowest level in the hierarchy and decays as the analysis moves up to
higher levels. Although decay rules are case-specific, polynomial and linear decay shapes seem to be
reasonable to use in practice. EI is a value within the range [0, 1] describing the event intensity; the
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Figure 3.5: Real and fictitious networks: (a) level 2; and (b) level 3.

lower the value, the lower the event intensity and EI = 1 the maximum intensity. At any level, the
same value will be assigned to all the elements that share the cluster with the nodes affected.
After the assessment level by level, the final index value assigned to an element ei of the network

can be computed as:
h(ei) = max

ω
[Iω(ei)] ; ω = 1, 2, ..., NL (3.3)

This index provides information on the relationship between local and global effects of the system.
If the assessment is taken to the upper levels, the interconnection of components is more redundant,
and the emergent properties are more complex. Then the impact of the event on the system is defused
leading to smaller index values and adding more elements to the set of affected nodes. It is stressed that
this model challenges certain aspects of existing network failure mechanisms such as cascade failure
since damage propagation is associated to the cluster structure within the hierarchical organization
and not only to its topology. Note also that by establishing NL, the map of index values will be
automatically defined. Then maps do not indicate the level of expected damage nor the size of the
threat. They indicate the relative degree in which every part of the system is affected as a result of
the network interactions.

3.3.3 Quantification of the impact

In addition to the index, decisions are based on actual data that can measure the consequences. If Φ
is a vector parameter describing a set of loss units (e.g., casualties, GDP, revenue, etc.), the impact of
the event on the entire network system can be estimated as:

m (Φ) =
kX
i=1

r (Φi,ω)h(ei) (3.4)

where ω represents a particular attribute loss to be measured and i = 1, 2, ..., k the number of nodes.
The function r can be seen as a vulnerability function relating the event intensity with the losses to
be measured. For instance, it might describe the population assigned to a node. The assessment of
losses, as a result of link failures, is beyond the scope of this paper.
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3.3.4 Overall algorithm

The overall algorithm of the proposed methodology to estimate the losses caused by a hazardous event
on the transportation network system is as follows:

1. define the network (nodes, links, attributes);

2. select criteria for clustering (e.g., cost of traveling);

3. construct the hierarchy (up to a prespecified level of detail, NL) by carrying out a successive
non-supervised clustering process;

4. define and characterize the event or set of potential damaging events to be considered (spatial
distribution, intensity etc.);

5. identify the set of elements (nodes or links) affected by the event;

6. compute the indicator h(ei) for every node based on the hierarchical structure; and

7. when applicable, make the appropriate interpolation to take into account the spatial consequences
of the event.

3.4 Model implementation
A network management tool in the form of a mathematical algorithm was developed in Matlab R°.
This tool can handle different hazard event types and provides information about their impact on
the network. The consequences of a hazard are evaluated in terms of the impact index and by an
estimation of the direct and indirect consequences. The software also provides information about the
properties of any network. The interface of the tool is shown in Figure 3.6.

3.4.1 Type of events

In the algorithm developed, four event types can be used to describe the area of influence of a hazard:
(1) individual node disconnection; (2) circular region; (3) irregular region (e.g., flooding); and (4)
event path (e.g., hurricane). The model also allows combining different hazard types. The extent of
the hazard and its intensity are usually defined by the physical characteristics of the event and are
an input to the model. Figure 3.7 shows an illustrative example of the first two cases and Figure 3.8
an example of cases 3 and 4. For illustrative purposes, the results obtained for the events shown in
Figures 3.7 and 3.8 were computed using the following basic information:

• the analysis was carried out at level 3 in the hierarchy for all cases;

• the model used to compute the hazard index (i.e., f) was assumed to be linear;

• the limits for defining the qualitative measure of the impact index were: "High" = [0.75 − 1],
"Moderate" = [0.40− 0.75], "Low" = [0.15− 0.40], and "Minor" = [0− 0.15];

• the limits (minimum and maximum) of the population affected were computed from a uniform
distribution with mean 50% and COV 25%;

• the limits (minimum and maximum) of the impact on productivity were computed from a uniform
distribution with mean 25% and COV 60%; and

• the hazard event intensity was taken as EI = 1.
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Figure 3.6: Interface of the software developed in Matlab
R°
to model the impact of various hazard

events on the network.
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Figure 3.7: Impact index scenarios for: (a) selected nodes (35, 220, 270, 310); and (b) for a circular
region.
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Figure 3.8: Impact scenaros for: (a) irregular region; and (b) event path.

Table 3.3 presents a summary of the impact of these events, the consequences and the contribution
of the elements of the network. It can be observed from the figures that the impact of the hazard events
is not restricted to their areas of influence. On the contrary, the impact includes other nodes that are
beyond the event physical limits. Losses are estimated based on the attributes of every node. The
properties of every node are defined by assigning to it a population size, housing and infrastructure
value and productivity according to the actual population spatial distribution. The contribution to
damage of nodes inside and outside the physical area of influence of the hazard event were separated.
Then the percent contribution of nodes outside the physical area of the event is shown in the last
row of Table 3.3. It can be observed that it is higher when the event consists of a set of individual
selected nodes (97.56%). As for the other cases, the result depends highly on the nodes affected and
the connectivity of the network. The model can also be adapted to carry out simulation studies. In this
case, events can be generated randomly on a specific area, and the consequences can be characterized
probabilistically to support intervention decisions.

3.4.2 Evaluation at different levels

The main advantage of using a hierarchical structure to support the decision making process is that
information and evidence can be obtained at different levels of precision, i.e., different levels within
the hierarchical description of the system. Upper levels provide a general overview of the problem and
contribute with information with large uncertainty; lower levels provide more detailed descriptions
of the impact and smaller uncertainty. If the event is known and can be completely characterized
(i.e., spatial distribution and intensity), lower levels in the hierarchy become very important to make
accurate decisions. Nevertheless, if there is uncertainty about the event location or the event intensity,
middle and upper hierarchical levels become more important.
Figure 3.9 presents the case of a hazard event defined by a circular region. For this case, the impact

index is evaluated at levels 2, 4 and 6. It can be observed that for the upper levels in the hierarchy
the most critical area is larger than for the lower levels, where it is reduced along with the uncertainty.
The results of the impact of this event for each level are shown in Table 3.4, where only indirect impact
is reported (population affected and productivity losses). It can be observed that as the analysis is
taken to the lower levels of the hierarchy, the estimation of losses and population affected decrease.
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Measure Selected Circular Irregular Event
Nodes Region Region Path

Impact Index (% of total network)
High 25.1 5.1 14.1 17
Moderate 8.2 2.1 7.6 9.3
Low 0 0 0 0
Minor 66.7 92.8 78.3 73.7
Population Affected (million)
min 4.2 0.4 2 3.2
max 5.3 0.5 2.5 3.9
Direct Losses (US$ million)
Housing + Infrastructure
min 1.27 0.85 14.08 31.13
max 4.33 2.87 47.76 105.65
Productivity Losses (US$ million)
min 42.34 3.78 19.88 31.55
max 804.51 71.85 377.63 599.41
Network Effect Contribution(%) 97.56 74.26 57.45 25.33

Table 3.3: Results obtained for all four illustrative hazard events considered.
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Figure 3.9: Impact index-based map for a circular hazard and three levels in the hierarchy: 2, 4 and 6.
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Measure Hierarchical Level
2 4 6

Impact Index (% of total network)
High 26.9 1.3 1.3
Moderate 0 2.9 0
Low 0 22.7 25.5
Minor 73.1 73.1 73.1
Population Affected (million)
minimum 3.2 1.2 0.7
maximum 3.9 1.5 0.9
Productivity Losses (US$ million)
minimum 31.75 11.87 7.35
maximum 603.24 225.47 139.58
Network Effect Contribution (%) 98.22 95.24 92.31

Table 3.4: Impact index maps computed at level (a) 2; (b) 4; and (c) 6.

3.4.3 Impact of Hurricane Ike on the Texas transportation network

Description of Hurricane Ike

Hurricane Ike was the third major hurricane of the 2008 season and made landfall at 2:10 a.m. CDT
on September 13 over the east end of Galveston Island (Figure 3.10). At landfall, Ike was classified as a
category 3 hurricane with wind speeds of 185 km/hr. The consequences of the hurricane are still being
evaluated but rough estimates from different sources predict about 5 million people left without water
and power, insured economic losses between $8bn and $18bn and extensive environmental damage in
Galveston and large areas along the coast.

Network impact index

The impact of Hurricane Ike was divided into two parts: flooding and strong winds. The network
impact indices of both events (evaluated at level 2 in the hierarchical model) are shown in Figure 3.11.
The physical extent of the hazard is represented by the dotted lines. It can be observed in Figure
3.11 that the impact of Ike on the network goes beyond the area affected directly by the event. This
implies that there is an important impact on connectivity, i.e., cost of traveling and transporting goods.
This assessment is an improvement over traditional models that focus only on estimating direct costs
reported in the affected area.
The idea behind constructing the hierarchy is to provide a tool that can be used at different levels

of precision. Then any assessment about the performance of the network, g, can be made with more
precision as more information about the event and the nodes is provided. Figure 3.12 shows the impact
of high wind speeds on the network when evaluated at level 4 in the hierarchy. In this case, given that
more detailed information about nodes and links is provided, the impact index is computed again.
Then some nodes that had a high impact index at level 2 were given a smaller value. The analysis in
the upper levels of the hierarchy are useful to make rough estimates of the event’s impact, but more
precise forecasts of the consequences can be obtained from analysis in lower hierarchical levels.

Social and economic impact

In order to make an estimation of direct costs (damage to housing and infrastructure) the model uses a
strategy similarly to the ones used in traditional analysis. Every node in the event path (influence area)
has as one of its attributes the value of housing and infrastructure. Then based on an approximate
triangular distribution relating flooding and damage and wind-speed and damage, the total direct costs
were estimated within the range [$10.92, $37.92] billions. These values are independent of the level at

33



Figure 3.10: Path of Hurricane Ike over Texas (source: http://stormadvisory.org/map/atlantic).
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Figure 3.11: Network impact index at level 3. Spatial distribution of Ike considering: (a) flooding; and
(b) wind speed.
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Figure 3.12: Impact index for winds at level 4.

which the analysis is carried out because they result from a direct evaluation of losses in nodes located
in the event path. The evaluation of indirect losses is, however, the most important aspect of the
model since it captures the network effect. As indirect losses two values were measured: 1) population
affected; and 2) loss of productivity.
The estimates of people affected by the flooding and wind speed are shown in Figure 3.13a. The

expected number of people affected by flooding (level 2: [6.2, 12.8]million; and level 6: [4.4, 9.1]million)
is larger than the number of people affected by wind (level 2: [4.6, 5.8] million; and level 6: [3.7, 4.6]
million). It can be observed that if the estimation is made in a lower level, the uncertainty (range
of possible values) decreases from 6.6 at level 6 to 4.7 million at level 2 for flooding and from 1.2 to
0.9 million for wind. This is explained by the fact that there is a better knowledge of the network
interrelations in the lower level of the hierarchy (smaller clusters). In the assessment, the contribution
of nodes outside the event path decreases from 46.8% in level 2 to 25% in level 6 for the case of high
speed winds and from 79% to 73% for flooding (Figure 3.13b). Then, estimates made only from nodes
directly affected will significantly underestimate actual values.
The estimation of productivity loss included the assessment of two measures: the GDP and the

percent loss in the Texas Industrial Productivity Index (TIPI), which measures the output of the
manufacturing, mining, and utility sectors of the Texas economy (FRBD, 1989 [20]). The loss in
productivity was roughly estimated by a function describing the number of days off work or days with
no productivity. According to the Federal Reserve Bank of Dallas, manufacturing of nondurable goods
and mining indicators of the TIPI fell 0.23% and 0.47%, respectively, in September. Since they have
shown a steady growing trend during last months, it is therefore reasonable to assume that most of this
fall might have been caused by the impact of Ike. Figure 3.13b shows the contribution of the network
components located outside the event’s area of influence, at level 2, on the impact index factor. This
means that in the case of wind damage, 21% of the loss in TIPI comes from network nodes located
within the storm path and 79% from locations outside the storm path. For the case of flooding, these
values are 47% and 53%, respectively. On the other hand, the impact over productivity in terms
of percentage of the GDP lost, assuming proportionality to population, is [0.14, 0.29] for level 2 and
[0.10, 0.21] for level 6 in the case of flooding and [0.07, 0.14] for level 2 and [0.05, 0.11] for level 6 in the
case of wind.
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Figure 3.13: (a) Boundaries defining people affected for both flooding and wind speed; and (b) Con-
tribution of the network elements outside the storm path to the estimation of people affected and loss
of productivity.
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Chapter 4

Probabilistic modeling of
deteriorating systems

4.1 Introduction
The main objective of this chapter is to provide a comprehensive probabilistic model to study the time
dependence performance of infrastructure components (Figure 1.1). It integrates the uncertainty about
the occurrence time and damage extent caused by extreme loads and the damage accumulation as a
result of progressive deterioration. Probabilistic models and stochastic processes are used to improve
on traditional life-cycle cost analysis and reliability based design optimization. Although the proposed
model has applicability in many areas, the emphasis of this paper is primarily on civil engineering
infrastructure systems.
The specific objectives of this paper are:

1. develop a stochastic model of the life-cycle performance of infrastructure systems;

2. model the time-dependent performance of structures subject to multiple deterioration processes;
and

3. improve existing reliability-based design and operation (maintenance) models of infrastructure
components.

A review of the state of the art of deteriorating systems in various engineering areas is presented
in section 4.2. Section 4.3 presents an overall description of the problem, the basic considerations and
goals of the proposed model. Section 4.4 focuses on developing a probabilistic model of extreme events
only. Progressive deterioration is included in the model in section 4.5. In section 4.6 the model for
total system failure is presented and discussed. Finally the problem of life-cycle cost analysis and
reliability-based design optimization is presented in section 4.7.

4.2 Structural deterioration
In practice, most infrastructure systems deteriorate as a result of the action of both sudden extreme
events (i.e., shocks) and continuous progressive degradation caused mainly by aging and environmen-
tal factors. They both cause damage to accumulate with time stripping life units from the system.
Earthquakes and hurricanes are examples of extreme events, while corrosion and fatigue are typical
cases of progressive degradation. In civil engineering infrastructure systems, life units are described
by a system performance measure (e.g., displacement or drift). Structural deterioration can be man-
aged with a variety of intervention measures, which can be grouped into preventive maintenance (i.e.,
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intervention to avoid total failure) and full reconstruction. The need for an intervention is defined by
performance thresholds, which are prescribed in design codes or operation manuals. Then the main
goal in infrastructure management is to maintain the system operating in acceptable conditions at a
minimum cost. This objective is achieved by a cost-based optimization that requires a balance among
the economic investment, the benefits derived from the existence of the project and the consequences
in case of failure. In other words, designing, constructing and maintaining infrastructure may be
viewed as a decision problem in which the maximum economic benefit of the life-cycle of the project is
achieved while the reliability requirements are fulfilled simultaneously at the decision point (Rackwitz,
2000 [55]).
Progressive deterioration is a reduction of the structural capacity caused mainly by chloride ingress,

which usually leads to steel corrosion, loss of effective cross-section of steel reinforcement in RC struc-
tures, concrete cracking, loss of bond and spalling. The details of these processes are beyond the
scope of this paper but are well described by Val and Stewart, 2005 [65] and Liu and Weyers, 1998
[39]. Progressive deterioration has been managed traditionally by using the reliability index profile,
which describes the change of the reliability index with time. Simplified degradation models have been
proposed by Ellingwood and Mori, 1993 [19], Mori and Ellingwood, 1994 [43], Frangopol et al., 2004
[24], Petcherdchoo et. al., 2004 [54] and Cinlar et. al., 1977 [13]. Many papers have been published
proposing models to keep track of structural deterioration with time and to define optimal intervention
policies. Commonly, these models are based on Markov Decision Processes (MDP) (Harper et al., 1990
[28], Gopal and Majidzadeh, 1991 [25], Kleiner, 2001 [34], Mishalani and Madanat, 2002 [42], Guil-
laumot et al., 2003 [26], and Kubler and Fabber, 2003 [35]), Bayesian probability (Pandey, 1998 [50],
Jian and Xila, 2005 [31]), renewal theory (Rackwitz, 2002 [55]) and approximate functions obtained
from experimental data (Mori and Ellingwood, 1994 [43]). A review of common probabilistic models
for life-cycle performance of deteriorating structures can be found in Frangopol et. al., 2004 [24].
Deterioration caused by extreme events is usually associated to earthquakes, hurricanes or blasts

(terrorists attacks). In these cases, the structure is subject to randomly occurring shocks, and each
shock causes a random amount of damage. Most shock maintenance and failure models are based on
a control-limit policy, in which limit state violations (requirement for an intervention) are carried out
once the accumulated damage exceeds a critical value or at failure, whichever occurs first (Valdez-
Flores and Feldman, 1989 [66]). Extensive research has been carried out on mathematical models for
shock degradation (Barlow and Proschan, 1965 [6], Sherif and Smith, 1981 [63], Aven and Jensen,
1999 [5], Taylor, 1975 [64], Nakagawa, 1976 [44], Feldman, 1976 [21], Feldman, 1977 [22], Feldman,
1977 [23], and Zukerman, 1977 [72]). Although this problem has been discussed extensively in civil
engineering-related problems, only a few analytical solutions have been proposed within the context
of structural optimization and life-cycle cost analysis. The first works on this topic were published by
Resemblueth and Mendoza, 1971 [58], Hasofer, 1974 [29] and Rosemblueth, 1976 [59] in the context
of earthquake resistance design optimization. Their ideas were reconsidered by Rackwitz, 2000 [55],
to propose a general framework for optimal design and reliability verification. Rackwitz considered
two main possible structural operation policies: structures abandoned after first failure and structures
reconstructed systematically. Furthermore, for each case three loading conditions were considered: 1)
time invariant loads; 2) extreme overloads (performance under Poisson perturbances); and 3) failures
described by Poisson perturbances. Rackwitz uses renewal theory and takes advantage of the form
of the discount function to achieve a rather practical (time-independent) solution to the expected
life-cycle cost of a structure. The merit of the solution for random failures in time with systematic
reconstruction (e.g., seismic design case) is that it does not depend on a specific lifetime of the structure,
which is a random variable very difficult to quantify and usually underestimated by codes of practice.
The solution is based on failure intensities and not on time dependent failure probabilities. It is
not necessary to define arbitrary reference times of intended use or to compute first passage time
distributions. Similarly, Wen and Kang, 2001 [71] developed a model to minimize the life-cycle cost
with respect to the design load and resistance. The random occurrence and intensity variation of the
hazards in time is described by a simple random process. The model also includes several possible
damage states after an event with the corresponding probability of reaching every damage state.
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After a thorough review of the models briefly outlined, it can be concluded that a comprehensive
life-cycle model should account for the following aspects:

1. structural deterioration as a combination of both progressive and sudden damaging events;

2. multiple damage states (not only the failure and not-failure states);

3. the role of deterioration history in estimating the structural condition at a given time;

4. after failure, structural reconstruction does not necessarily take the component to its initial
condition; and

5. the selection of acceptable operational and failure thresholds that is critical in life-cycle analysis.

4.3 General deterioration model
Consider a structural component with an initial remaining life u0 (Figure 4.1). As deterioration
increases, the remaining life of the component decreases. Then if D(t) describes the deterioration of
the component at time t; the remaining life of the component can be expressed as:

V (t) = u0 −D(t) (4.1)

An intervention (maintenance or reconstruction) is carried out once the remaining life of the system
reaches a threshold value. Two possible threshold values (limit states) can be identified. The first one
corresponds to the minimum level of performance of the system a level below which the system cannot
be in service under any circumstance; this does not necessarily implies collapse. This is a fixed and
predefined value represented by s∗ in Figure 4.1. The second threshold is an operation threshold. This
value (k∗ in Figure 4.1) describes the minimum acceptable operation level defined, for instance, by
a regulatory agency. In other words, the system can still operate below this level but the operation
will not be considered satisfactory, efficient or acceptably safe. In summary, the system will be in
acceptable operation (“on”) as long as the remaining life is larger than a given value k∗ in Figure
4.1 and the system will be out of service (“off”) once the remaining life falls below k∗ and until it is
repaired and taken to a new "initial" remaining life value u > k∗. The length of time in which the
system remains "off" is the time required to maintain and/or retrofit the structure. Finally, after the
intervention, the condition of the structure will reach a new value corresponding to the remaining life
that might differ from the value at the beginning of the previous cycle.
Consider a structural component with a sample path as the one shown in Figure 4.1. Assuming

that both continuous and sudden damaging events are independent, the deterioration at time t, for
the first cycle can be computed as:

D(t) =

Z t

0

rp(τ)dτ +
XNt

i=1
Yi (4.2)

where Yi is the loss of remaining life caused by shock i and rp(t) > 0 describes the rate of progressive
deterioration. Note that the term remaining life used here does not necessarily describe time, but
more realistically, a loss of capacity expressed in physical units (e.g., structural drift, stiffness).
A system fails completely when the accumulated damage reaches a predefined damage threshold

s∗. In most structures the threshold s∗ corresponds to the ultimate structural capacity and therefore
this failure type can be assimilated to structural collapse. Nevertheless, maintenance programs are
based on early repairs, that is, preventive repairs carried out before the structure collapses. Preventive
maintenance is conditioned on a level of damage k∗ with k∗ > s∗. Note that failure and preventive
maintenance are mutually exclusive since for any instantaneous event that takes the accumulated
damage below the threshold k∗, only one of these two cases is possible. Information about the structural
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Figure 4.1: General description of the system remaining lifetime.

remaining life is important in decision-making. For example, after a shock (e.g., earthquake) the
operator could make decisions based on the following criteria:

1. if the remaining life level is below threshold s∗, the structure is fully replaced immediately;

2. if the remaining life is between k∗ and s∗, preventive maintenance is carried out; and

3. if the remaining life is larger than k∗ the structure is not modified (Figure 4.1).

The derivations that will be presented in this document can be used to respond to questions such
as: what is the probability that the remaining life of the system falls below a given level z before
time t? What is the average availability of the system? What are the optimum design and operation
policies? And what is the remaining life of the system at time t? Information from the model can also
be used to develop fragility curves and sensitivity analysis of various design and operation parameters.

4.4 Effect of shocks
The proposed model for structural deterioration as a result of only successive shocks is based on the
following assumptions:

1. damage accumulates as a consequence of consecutive shocks;

2. the loss of remaining life describes "structural damage" as a result of the shock, not the shock’s
"intensity";

3. the size of shocks (damage) are independent and identically distributed;

4. all replacements and repairs return the system to good as new, i.e., statistically identical cycles;
and

5. repairs and replacements are instantaneous; therefore, the system does not remain "off" at any
time.
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Figure 4.2: Relationship between the accumulated effect of shocks and the system cycles.

4.4.1 Remaining lifetime

For extreme events, the damage at shocks is described by the point process Y = {Y (t), t > 0} in
which the interarrival times of successive sudden events (i.e., shocks Yi) is a sequence of nonnegative,
independent, random variables X1,X2, . . . with common distribution F (t) = p(X ≤ t) (Figure 4.1). If
the system is not intervened, the accumulated damage at a given time t is

Ht =
PNt

i=1 Yi (4.3)

where H(t) = Ht, Nt is a random variable describing the total number of shocks by time t (Figure
4.2); Yi is the amount of damage produced by the ith shock. Yi, i = 1, 2, . . . are positive, independent
and identically distributed random variables. Further, it is assumed that the distribution of Yi does
not depend upon the previous states of the system.
The lifetime of the system consists of successive independent and stochastically identical cycles.

One cycle starts with the system in a condition as good as new and it deteriorates as a result of shocks;
once the system fails, immediate reconstruction (or maintenance) is carried out and a new cycle starts.
If Zi describes the ith replacement time (cycle), the total amount of shocks by time t in the ith cycle
can be computed as:

Qi(t) =

" PNt

j=1 Yj i = 1hPNt

j=1 Yj −
PNZi−1

j=1 Yj

i
· 1{Zi<t<Zi+1} i > 1

#
(4.4)

where the second term on the right hand side of equation 4.4, for i > 1, is the history of demands up
to the last replacement (Figure 4.2). Note that the accumulation of damage is defined by statistically
identical cycles. The remaining lifetime of the system V (t) defined through

©
Ht, Zc(t)

ª
is a regenerative

process, implying that the condition of the system depends on the its history only through the state
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at the end of the previous cycle. At the beginning of every cycle i the remaining lifetime is reset
to a random value ui−1. Therefore, the loss of remaining lifetime at a given cycle i is computed by
substracting the accumulated damage caused by shocks from ui−1; this is (Figure 4.2),

Vi(t) = ui−1 −Qi
t; i = 1, 2, 3, ... (4.5)

where Qi
t = Qi(t).

4.4.2 Probabilistic model of interventions

Define a probability space (Ω,=, P ) with respect to which all random variables that will be used in
this model are measurable. Further, define the counting process {c(t), t ≥ 0} representing the number
of interventions (i.e., early or full replacement) by time t, and a cycle as the time between any two
interventions. The performance of the model throughout its lifetime is defined by two thresholds, k∗

and s∗ (Figure 4.3). Then, the structural life ranges that define failure or preventive maintenance in
a cycle (Figure 4.3) can be generalized as: s

c(t)
= u

c(t)−1 − s∗ and k
c(t)

= u
c(t)−1 − k∗; where u

c(t)−1

is the remaining lifetime of the system at the beginning of the c(t)th cycle. In the c(t)th cycle, any
intervention takes place every time the remaining life falls below k∗, i.e., Vc(t)(t) < k∗; if the structure
is not abandoned, it is put back in service immediately.
Consider the event the system is intervened, which means that either the system is reconstructed

after failure or preventive maintenance is carried out. Then interventions are modeled as a first passage
problem defined in terms of the instantaneous intervention rate. This is the probability that if the
system has survived for a time t (i.e., has not been intervened), it will not survive an additional time
dt; this is also commonly referred to as the hazard function. The hazard function, expressed as the
rate λ(t), is a renewal counting process (Bremaud, 1981 [7], Aven and Jansen, 1999 [5]):

λ(t) =
X
n≥0

f(t− Tn)

1−
R t−Tn
0

f(x)dx
· 1{Tn<t≤Tn+1} (4.6)

where Tn =
Pn

i=1Xi is the time to the latest shock before t. At this point, it is assumed that
interventions occur only at shock times. The rate defined in equation 4.6 does not provide information
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about the remaining life of the system. Since the magnitude of damage and the occurrence times are
independent, the probability that an intervention is required at time t will be:

dP (intervention at time t) = λ(t)p(Qc(t)(t) > uc(t)−1 − a∗) (4.7)

where a∗ takes the value of k∗ for preventive maintenance and of s∗ for failure. The expression dP (.)
describes the derivative of the probability. Further, if dG(y) is the probability of having a shock size
(i.e., damage size) between y and y + dy, then,

dP (intervention at time t) =

Z ∞
V ∗
c(t)

(t,a∗)

λ(t)dG(y) (4.8)

where V ∗c(t)(t, a
∗) = Vc(t)(t)− a∗.

Let’s define dc(t)=c(t + dt) − c(t); with c(t) = 1, 2, ... being the cycle in which the system is at
time t. Then, dc(t) = 1 if there is an intervention and dc(t) = 0 otherwise. Furthermore, if £t is the
process history up to t, the instantaneous intervention rate can be written for all cases considered in
this paper as:

P (dc(t) = 1 | £t−) =

⎡⎢⎢⎣
R∞
V ∗
c(t)

(t,s∗) λ(t)dG(y) · 1{Zc(t)−1<t≤Zc(t)} FailureR V ∗c(t)(t,s∗)
V ∗
c(t)

(t,k∗) λ(t)dG(y) · 1{Zc(t)−1<t≤Zc(t)} Prev. MaintenanceR∞
V ∗
c(t)

(t,k∗) λ(t)dG(y) · 1{Zc(t)−1<t≤Zc(t)} Any intervention

⎤⎥⎥⎦ (4.9)

where t− indicates that the regenerative process is right continuous. The limits of the integral in every
case define the range of shock sizes that may cause the intervention (failure or maintenance). The
complexity of the solution for P (dc(t) = 1 | £t−) lies on computing the limits of the integral which
depend on the number of shocks in the cycle and the distribution of the sum of shock sizes (i.e.,
accumulated damage). The limits of the integral can be defined, for any cycle, as:

V ∗c(t)(t, a
∗) = Vc(t)(t)− a∗ = uc(t)−1 − a∗ −Qc(t)(t) (4.10)

Rewriting equation 4.10,

V ∗c(t)(t, a
∗) =

"
u0 − a∗ −

PNt

j=1 Yj c(t) = 1

uc(t)−1 − a∗ −
hPNt

j=1 Yj −
PNZi−1

j=1 Yj

i
c(t) > 1

#
(4.11)

If G(y) = p(Y ≤ y) is the distribution function of the damage caused by any shock and G(j)(y) the
j-fold Stieltjes convolution of G(y) with itself, then by conditioning on the number of shocks:

V ∗c(t)(t, a
∗, n) =

" R u0−a∗
0

(u0−a∗−y)dG
(n)(y) c(t) = 1, G(n)(y) ≤ (u0−a∗)R uc(t)−1−a∗

0
(uc(t)−1−a∗−y)dG

(n)(y) c(t) > 1, G(n)(y) ≤ (uc(t)−1−a∗)

#
(4.12)

Note that V ∗c(t)(t, a
∗, n) has been described not only as a function of time but also as a function of

the number of shocks since it has to account for the accumulated damage.

4.4.3 System abandoned after first failure

This section considers the case of a structure exposed to successive shocks until the remaining life falls
below a prescribed threshold value. Once this happens, it is abandoned; the system is not reconstructed
or intervened in any way. Note that for this particular case a∗ = s∗ = k∗. Under these assumptions,
it is necessary to only model the first cycle and equation 4.9 specializes to:

P (dc(t) = 1 | £t−) =

Z ∞
V ∗1 (t,a

∗,n)

λ(t)dG(y) (4.13)
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The lower limit of the integral is a function of the initial remaining life and the shock history; then,

V ∗1 (t, a
∗
, n) =

Z u0−a∗

0

(u0−a∗−y)dG
(n)
(y); for G(n)(y) ≤ (u0−a∗) (4.14)

By removing the condition on the number of cycles, the failure rate can be rewritten as:

P (dc(t) = 1 | £t−) =
∞P
n=0

ÃZ ∞
V ∗1 (t,a

∗,n)

λ(t)dG(y)

!
P (N = n, t) (4.15)

The probability that an intervention is required before or at time t is given by:

Λ(t) =

Z t

0

ÃX∞

n=0

ÃZ ∞
V ∗1 (τ,a

∗,n)

λ(τ)dG(y)

!
P (N = n, τ)

!
dτ (4.16)

where p(N = n, t) is the probability of having n shocks by time t, and N is the number of shocks.

Illustrative example 1 Consider the case of a structure exposed to earthquakes with magnitude
M > 4 (those which can actually cause some damage) that follows a Poisson process with rate μ =
1/year. In addition, consider a structure designed and built to meet a target performance defined
by a vector parameter u. For the purpose of this paper, the remaining life of the structure will be
described as a percentage of u. The structural remaining life will be distributed lognormally with
μ = 100 (percentage) and COV = 0.25. Assume further that the damage caused by an earthquake is
governed by an exponential distribution G(y, θ) with θ = 0.05 and that the intensity of damage as a
result of a shock is not conditioned on the accumulated damage prior to the event. The cases that will
be studied are shown in Figure 4.4.
The Poisson process used to model earthquake occurrences implies that interarrival times between

earthquakes are exponential, therefore,

λ(t) =
f(t− Tn)

1−
R t−Tn
0

f(x)dx
=

μe−μ(t−Tn)

1− (1− e
−μ(t−Tn))

=
μe−μ(t−Tn)

e−μ(t−Tn)
= μ (4.17)

44



which reflects the memoryless property of the exponential distribution. The instant failure probability
is:

P (V (t+ dt) ≤ s∗| V (t) > s∗) =

Z ∞
V ∗1 (t,s

∗,n)

λ(t)dG(y) =

Z ∞
V ∗1 (t,s

∗,n)

μdG(y) (4.18)

If it is assumed that the initial remaining life is deterministic, i.e., u = u0, for case 1 (Figure 4.4):

P (V (t+ dt, u) ≤ s∗| V (t) > s∗) = μ

"
1−
Z u0−s∗

0

g(y)dy

#
= μ[1−G(u0−s∗)] (4.19)

For the case when the initial remaining life is defined as a random variable it is necessary to
uncondition equation 4.19 as follows:

P (V (t+ dt) ≤ s
∗| V (t) > s

∗
) =

Z ∞
0

μ [1−G(u0−s∗)] dFU (u); s < u (4.20)

where dFU (u) is the differential distribution function of the initial remaining life.
In case 2 (Figure 4.4) damage accumulates with time, and the lower limit of the integral in equation

4.18 becomes random and depends on the number of shocks, n, and their size (i.e., damage). The
accumulated damage is described by the sum of the damage caused by every shock. For the particular
case where the damage caused by every shock is exponentially distributed, the accumulated damage
after n shocks follows an Erlang distribution,

dG(n)(y, θ) =
1

(n− 1)!θ
nyn−1 exp (−θy) (4.21)

where x is the amount of damage and θ is the average damage size observed at every shock. Then:

V ∗1 (t, s
∗
, n) =

Z u−s∗

0

(u− s
∗−y)dG(n)(y)dy (4.22)

Note that the term u−s∗ is the total remaining life available to the system, and y is the remaining life
that has been taken from the system after n shocks (damage). In other words, V ∗1 (t, s

∗, n) defines the
minimum damage size required to cause the system’s remaining life to fall below s∗. In case 2 (Figure
4.4), the solution is conditioned on the number of shocks and on the initial remaining life u. Then, by
conditioning out these variables the final expression for the instant probability of failure becomes:

P (V (t+ dt) ≤ s∗| V (t) > s∗) (4.23)

=

Z ∞
0

X∞

n=1

£
μ
£
1−G(V ∗1 (t, s

∗, n))
¤
p(N = n, t)

¤
fU (u)du; s < u (4.24)

where the probability of having n shocks by time t with exponential interarrival times is:

P (N = n, t) =
(θt)n exp (−θt)

n!
(4.25)

Comparing cases 1 and 2 (Figure 4.5) it can be observed that case 2 (multiple shocks) leads to
larger failure probabilities. This is expected since damage accumulates with time, and the probability
of exceeding the threshold increases with time. In addition, equation 4.23 can be used to define
time-dependent fragility curves by defining appropriate threshold values (i.e., s∗) that characterize
damage states (Figure 4.6). Since thresholds (i.e., s∗) define damage states, instant and accumulated
probability of intervention are larger for minor damage states and larger for severe damage states.
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4.5 Progressive deterioration
Progressive degradation is usually a slow continuous time dependent phenomenon, which is caused for
instance, by chloride ingress, corrosion, fatigue or biodeterioraton. Since there is little evidence of a
strong correlation between progressive deterioration and damage as a result of shocks, independence
will be assumed. A deterministic and a random model for deterioration are presented in this section.

4.5.1 Deterministic deterioration model

Figure 4.7 shows two deterioration models: linear and exponential and the combined effect of these
deterioration models with the case of intervention after a single shock (Figure 4.7a) or after multiple
shocks (Figure 4.7b). For the deterministic case, it is assumed that progressive degradation has a
continuous positive rate rp(t) > 0. Therefore, the remaining life of the structure at time t can be
computed as:

Vi(t) = ui−1 −Qi
t −

Z t

Zi−1

rp(τ)dτ (4.26)

= ui−1 −Qi
t −Ap(t− Zi−1) (4.27)

where the sub-index i describes the cycle the system is in. By including a progressive deteriorating
function, the integration limits in equation 4.9 are modified. Progressive deterioration reduces the
shock damage required to exceed the threshold value by reducing the remaining life of the system.
The integral limits in equation 4.9 will change to:

V ∗c(t)(t, a
∗) = Vc(t)(t)− a∗ −Ap(t− Zc(t)−1)

= uc(t)−1 − a∗ −Qc(t)(t)−Ap(t− Zc(t)−1) (4.28)

By making Ap(t, Z) = Ap(t−Zc(t)−1) and introducing the Stieltjes convolution of G(y) with itself,

V ∗c(t)(t, a
∗, n) =

" R TR
0
(TR − y)dG(n)(y) c(t) = 1, G(n)(y) ≤ TRR TRc(t)

0 (TRc(t) − y)dG
(n)
(y) c(t) > 1, G(n)(y) ≤ TRc(t)

#
(4.29)

where TR = u0 − a∗ −Qc(t)(t)−Ap(t, Z) and TRc(t) = uc(t)−1 − a∗ −Qc(t)(t)−Ap(t, Z).
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spaced shocks; (b) Shocks models used to simulate both extreme events and progressive deterioration.

4.5.2 Random progressive deterioration

The assumption that deterioration is a deterministic function works fine in many practical cases.
However, if the uncertainty of the process needs to be included, a good approximation can be obtained
by assuming that progressive deterioration is also a jump process in which the size of every jump is
random and jumps occur at fixed time intervals. Figures 4.8a and 4.8b show in light grey lines the
deterministic distribution of jumps in time. In Figure 4.8a, various sample paths of deterioration are
presented. The combined effect of the jump model for progressive deterioration and the model of
shocks is shown in Figure 4.8b.
Define Di as the loss of remaining life caused by shock i, GD(x) = p(D ≤ x) and the random

accumulated damage caused by progressive deterioration as: Sc(t) =
Pe

i=0Di. The remaining life by
time t becomes:

V ∗c(t)(t, a
∗) = Vc(t)(t)− a∗ − Sc(t) (4.30)

= uc(t)−1 − a∗ −Qc(t)(t)−
Pe

i=0Di (4.31)

The integral limit for the first cycle is

V ∗1 (t, a
∗
, n, e) =

Z u0−a∗

0

"Z u0−a∗−d

0

(u0−a∗−d− y)dG
(n)
(y)

#
dS(e)(d) (4.32)

where dS(e) is the stochastic differential of the distribution of the sum of e shocks describing the
progressive deterioration process. Note that e is deterministic and known at every time t. For all
cycles after the second,

V ∗uc(t)−1(t, a
∗
, e) =

Z uc(t)−1−a∗

0

"Z uc(t)−1−a∗−d

0

(uc(t)−1−a∗−d− y)dG
(n)
(y)

#
dS(e)(d) (4.33)

Note that for the case where progressive deterioration jumps are not random but deterministic with
Ap(t, Z) =D = t, equation 4.32 becomes,

V ∗1 (t, a
∗) =

Z u0−a∗−t

0

(u0−a∗−t− y)dG(n)(y) (4.34)
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which is the same solution obtained for the deterministic case. If the occurrence times are governed
by any deterministic function gd(t),

V ∗c(t)(t, a
∗) = uc(t)−1 − a∗ −Qc(t)(t)−

PNgd(t)

i=0 Di (4.35)

where Ngd(t) defines the number of jumps by time t. Note that the process rate (equation 4.6) will not
be affected since the jumps associated to progressive deterioration occur at fixed times.

Illustrative example 2 Consider the same structure described in illustrative example 1 and assume
that the system deteriorates with time. Initially consider that deterioration is a deterministic function
gd1(t) = t and gd2(t) = exp(αt), with α > 0. The limit state was defined by s∗ = 0.25. Also consider
only the structural performance during the first cycle. Under these assumptions, the integral limits
defined by equation 4.29 become:

V ∗1 (t, s
∗, n) =

Z u0−s∗−gd1 (t)

0

(u0 − s∗ − gd1(t)− y)dG(n)(y)

=

Z u0−s∗−t

0

(u0 − s∗ − t− y)dG
(n)
(y) (4.36)

and

V ∗1 (t, s
∗, n) =

Z u0−s∗− exp(αt)

0

(u0 − s∗ − exp(αt)− y)dG(n)(y) (4.37)

If randomness is introduced to the deterioration models by describing them as a jump process with
fixed interarrival times, the integral limits defined in equation 4.32 become

V ∗1 (t, s
∗
, n, e)gd1 (t)

=

Z u0−s∗

0

"Z u0−s∗−d1

0

(u0−s∗−d1−y)dG
(n)
(y)

#
dS(e1)(d1) (4.38)

V ∗1 (t, s
∗
, n, e)gd2 (t)

=

Z u0−s∗

0

"Z u0−s∗−d2

0

(u0−s∗−d2−y)dG
(n)
(y)

#
dS(e2)(d2) (4.39)

For the random models and in both cases, i.e., failure after a single shock or multiple shocks, it
was assumed that the damage at every jump is distributed exponentially and jumps are iid. The rate
of jump size was assumed to be ϑ = 0.75. Since jumps are exponentially distributed, dS(e2)(d) will
follow an Earlang distribution. For the case in which jumps are exponentially distributed in time, the
distances between progressive deterioration evaluations (jumps) will get closer as time becomes larger.
At the beginning the damage will be closer to the condition of no damage, and over time it will grow
faster.
The integral limits for all deterministic and random cases are shown in Figure 4.9 (equations 4.36,

4.37, 4.38 and 4.39). It can be observed that by introducing randomness, the integral limits change
reducing the remaining life available with respect to the deterministic case. For the conditions of this
example this difference is particularly important for the case of linear deterioration.
Figure 4.10 presents the instant intervention rate for various performance models. It can be ob-

served that when multiple shocks are taken into account, the instantaneous failure rate increases and
grows smoother than when a single shock model is used. The accumulated probabilities of intervention
by time t are shown in Figure 4.11 for the same cases shown in Figure 4.10. As expected, the accu-
mulated probability of intervention increases when progressive deterioration is included. Also random
deterioration models lead to larger intervention probabilities that the deterministic models.

49



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Time (years)

Deterministic 
linear

Shocks equally 
Distributed in time

In
te

gr
al

 li
m

its
Deterministic
exponential

Shocks exponentially 
distributed in time

No 
deterioration

Figure 4.9: Integral limits for all deterioration models considered.
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Figure 4.10: Instant intervention rates for all models considered. (a) The structure is intervened after
a single shock; and (b) the structure is exposed to multiple shocks.
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Figure 4.11: Probability of intervention by time t of a structure subject to (a) various deterioration
models and (b) multiple shocks.

4.6 Total system failure
As discussed in previous sections, the system may fail as a result of shocks only, progressive deteriora-
tion or a combination of both. Although the loss of remaining life is a consequence of both processes,
it is assumed that at the time of failure they will not occur simultaneously and that the actual failure
is caused by only one of them. For simplicity, only the case for the first cycle will be described, but it
can be easily extended to all other cycles.
The probability of having an intervention, i.e., that the loss of remaining life exceeds u0 − a∗,

was defined for all three intervention cases in equation 4.9 for the case of shocks only. If the random
progressive deterioration model is included, the probability of having an intervention (equation 4.9)
has to be modified to:

P (dc(t) = 1 | £t−) =⎡⎢⎢⎢⎢⎢⎢⎣

∙R∞
V ∗
c(t)

(t,s∗) λ(t)dG(y) +
R∞
V ∗
c(t)

(t,s∗) δ(t)dS(y)

¸
· 1{Zc(t)−1<t≤Zc(t)} (a)∙R V ∗c(t)(t,s∗)

V ∗
c(t)

(t,k∗) λ(t)dG(y) +
R∞
V ∗
c(t)

(t,s∗) δ(t)dS(y)

¸
· 1{Zc(t)−1<t≤Zc(t)} (b)∙R∞

V ∗
c(t)

(t,k∗) λ(t)dG(y) +
R∞
V ∗
c(t)

(t,s∗) δ(t)dS(y)

¸
· 1{Zc(t)−1<t≤Zc(t)} (c)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.40)

where case (a) is failure, case (b) is preventive maintenance; and case (c) any intervention (failure
of maintenance). Note that in equation 4.40 the second term in brackets accounts for the progressive
deterioration. The parameter δ(t) can only be 0 or 1. It is 1 at times of "scheduled" fictitious shocks
(describing the accumulated deterioration during a fixed period of time) and 0 otherwise.
If the structure is reconstructed after failure or intervened as a result of preventive maintenance,

the process regenerates (Figure 4.3). This means that the cycle in which the structure is found at the
time of evaluation, i.e., c(t), becomes important in the assessment. Regenerative processes are only of
interest in the case of damage accumulated with time until the system fails; otherwise, the problem
can be managed using basic renewal theory.
The instantaneous intervention rate, conditioned on the cycle in which the system is found, can be
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written as:

P (dc(t) = 1 | £t−) =
X∞

n=0

ÃZ ∞
V ∗
c(t)

(t,a∗,n)

λ(t)dG(y)

!
P (N = n, t) (4.41)

In order to condition out the cycle from this solution two approaches can be taken: 1) find the
actual analytical distribution of the length of a cycle and the number of cycles by time t; and 2) find
a limiting solution (t→∞).

4.6.1 Analytical solution

Define the length of a cycle as Li = Zi − Zi−1 and Z(z) = P (Li ≤ z). Therefore, Zm =
Pm

j=1 Lj and
its distribution is defined by the mth convolution with itself: Zm ∼ Z(m)(z). By assuming that the
length of cycles is independent and identically distributed,

P (dc(t) = 1 | £t−)

=
X∞

m=0

∙Z t

0

X∞

n=0

µ R∞
V ∗m(t,a

∗,n) λ(z)dG(y)

P (N= n, t)

¶
dZ(m)(z)

¸
P (M= m, t) (4.42)

where M(t) is a counting process describing the number of cycles (interventions) and P (M = m, t) is
the probability that there have been m cycles by time t. The limit of the integral in equation 4.42 is:

V ∗m(t, a
∗
, n) =

Z um−1−a∗

0

(um−1 − a∗ − y)dG(n)(y); for G(n)(y) ≤ (um−1−a∗) (4.43)

It is important to stress that if the origin of the process does not coincide with the origin of a
cycle, the distribution of length of the first cycle will be different from the distribution of the following
cycles; therefore, some special considerations are needed in equation 4.42. The solution for equation
4.42 can become extremely complex and consequently, a better approach might be to take advantage
of the limiting results for regenerative renewal processes.

4.6.2 Asymptotic solution

If in a renewal process the origin of the analysis coincides with the initiation of a cycle, the distribution
function to the first renewal and the distribution of any other cycle are equal. These types of processes
are called ordinary renewal processes. On the other hand, in a delayed renewal process, the origin
does not coincide with the initiation of a cycle; therefore, the first renewal has a different distribution
than the subsequent cycles. However, if the process has been running for a long time, the effects of the
origin vanish as t → ∞, and the delayed and the ordinary process converge asymptotically although
the transient behavior is different.
For most existing structures, which have been in operation for a long time, the asymptotic behavior

is (Cinlar, 1975 [12]):

lim
t→∞

P (V (t+ dt) ≤ s
∗| V (t) > s

∗
)=

1

E[L]

"Ã ∞X
n=0

ÃZ ∞
V ∗1 (t,a

∗,n)

λ(y)dG(y)

!
P (N = n, t)

!#
(4.44)

where E[L] is the expected value of the length of a cycle. The length of one cycle is the expected time
between interventions given that repair and reconstruction times are not significant with respect to
the total life-cycle.
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4.6.3 Renewal approach to expected length of a cycle

In order to compute E[L], remember that the total accumulated damage in a cycle was defined in
equation 4.3 as Ht =

PNt

i=1 Yi where Nt is the nth demand intensity that causes the system performance
to fall below a∗; this is:

Nt = min
©
n :
Pn

i=1 Yi > uc(t)−1 − a∗
ª

(4.45)

In addition, if Xi, i > 1 are the interarrival times of the shocks, the expected operating time will

be obtained by using Wald’s lemma: E
hPNt

i=1Xi

i
= E[X]E[Nt]; this is:

E
£
Amount of time for which Vc(t)(t) > a∗

¤
= E

hPNt

i=1Xi

i
(4.46)

= E[X]E [Nt] (4.47)

Furthermore, it can be proved that E[TN(t)+1] = μ[mG(t) + 1]; where TN(t)+1 is the time until the
N(t) + 1 shock, μ = E[X] and mG(t) = E [Nt] is the renewal function (for more details see [60], [12]
and [5]), which can be computed as follows:

mG(t) =
X∞

n=1
G(n)(t) (4.48)

If all cycles are independent and identically distributed: L = L1 = Lc(t), and

E [L | u] = E[X] (mG(u− a∗) + 1) (4.49)

where E[L] is conditioned on the remaining life at the beginning of every cycle, u.

4.6.4 Distribution function of the time to failure in a cycle

A direct way of computing the expected length of a cycle is to find the distribution function of the
time between regenerations. Assuming independence between failures and disturbances, the density
of the time to nth shock can be computed in terms of the time required for the remaining life to fall
below s∗. For the general case (i.e., shocks and deterministic progressive deterioration), this is:

P (V (t) ≤ s∗) =
∞X
n=0

[P (u−Ap(t)− s∗ ≤
Pn

i=1 Yi)]P (N = n, t)

which can be written as:

FV (s
∗, t) = P (V (t) ≤ s∗) (4.50)

=
∞X
n=0

ÃZ ∞
V (n,t,s∗)

dG(n)(y)

!
P (N = n, t) (4.51)

where V (u, t, s∗) was defined in equation 4.12 for the case of shocks only and in equations 4.29 and
4.32 for progressive deterioration. Then,

E[L] =

Z ∞
0

(1− FV (s
∗, t))dt (4.52)

Illustrative example 3 In example 1, earthquake damage was modeled by a compound Poisson
process with a damage rate θ = 0.05 and earthquake interarrival times exponentially distributed,
E[X] = 1/μ, (μ is the earthquake rate). For the case of failure after the first shock (Figure 4.4a),
E [L] = E [X] = 1, and the limiting results are exactly the same as the solution presented in equation
4.19 (Figure 4.12). If the structure is subject to multiple shocks (damage accumulation process) the
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Figure 4.12: Comparison of accumulated structural probability of intervention of one cycle and the
limiting result; both for the case of a structure subject to multiple shocks and for a structure that fails
after the first shock.

solution is obtained by evaluating equation 4.44. It is then necessary to compute the expected length
of the cycle (equation 4.49). Given that damage is exponentially distributed, the renewal function can
be defined as:

MG(T ) =
X∞

n=1

Z T

0

∙
1

(n− 1)!θ
ntn−1 exp (−θt)

¸
dt (4.53)

For a∗ = s∗ = 25 and u = 100 (deterministic),

E [L] = E [X] (MG(u− a∗) + 1) (4.54)

= 1 · (3.75 + 1) = 4.75 years. (4.55)

Therefore,

lim
t→∞

P (V (t) ≤ s∗)=
1

4.75

"Z t

0

ÃX∞

n=0

ÃZ ∞
V ∗1 (t,a

∗,n)

λ(z)dG(y)

!
P (N= n, t)

!
dt

#
(4.56)

This limiting probability can be observed in Figure 4.12. It can be observed that the limiting
solution leads to smaller intervention probabilities at any given time t.

4.7 Cost-based optimization
The life-cycle cost (LCC) of a project is defined as the distribution of total cost that is incurred, or
may be incurred, in all stages of the project life-cycle. Within this definition, the life-cycle is defined
by the time window required to achieve the functional or economic objectives for which the project
was intended. LCC analysis provides a framework to support decisions about resource allocation
related to the design, construction and operation of infrastructure systems at minimum life-cycle cost.
The probabilistic description of the system performance with time also has implications on the cost
effectiveness of the investment.
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The cost structure of any project (objective function) can be described as:

Z(p) = B(p)− C0(p)− L(p) (4.57)

where B(p) is the benefit for the existence of the structure, C0(p) the construction cost and L(p) the
value of losses if there is failure, which is usually written in terms of the the cost of losses, CL(p),
and the failure probability, i.e., L(p) = CL(p)Pf (p). The vector parameter p accounts for all design
parameters.
The decision about the project has to be made analyzing the probability distribution of Z(p) at

time t = 0. For the project to be feasible, Z(p) has to be positive. Therefore, the optimum design,
construction and operation requirements are associated with the vector parameter p for which Z(p)
is positive and maximum. Equation 4.57 can be rewritten in many ways by, for instance, discretizing
costs further, including multiple limit states, or extending the problem to multiple hazards (Wen and
Kang, 2001 [71], Onoufriou and Frangolpol, 2002 [49], Val and Stewart, 2005 [65], and Mander et al.,
2007 [41]). Optimal investment decisions require both maximizing the economic benefit of the life-cycle
of the project and meeting the reliability requirements simultaneously at the decision point.

4.7.1 Derivation of terms for the objective function

Benefit function

The benefit B(p) in equation (4.57) is a value that has to be discounted to the decision point. According
to Streicher et al., 2008 [62], for a benefit rate that is not affected by short reconstruction times and
constant, i.e., b(t) = b,

B =

Z ∞
0

b exp(−γt)dt = b

γ
(4.58)

A more detailed derivation for computing the total benefit taking into account the time-dependence
of b(t) is given in Streicher et al., 2008 [62], and the results are shown here for completeness. Define
θi = ti − ti−1 to be the time between renewals with density f(t,p). The density of the times between
renewals was derived for the case of shocks and progressive deterioration in section 4.6.4.
The total benefit is (see the Appendix for full derivation):

B(p) = E

" ∞X
i=1

Ã
exp

h
−γ

Pi
k=1 θk

i Z θi

0

exp (−γτ)b(τ)dτ
!#

(4.59)

= E

"Z θ1

0

exp (−γτ)b(τ)dτ
#
+

E[ exp (−γθ1)]E
hR θ
0
exp (−γτ)b(τ)dτ

i
1−E[ exp (−γθ)] (4.60)

For the case where the structure is abandoned after first failure or at a finite service time ts
(Streicher et al., 2008 [62]),

B(p) = E

∙Z t

0

exp (−γτ)b(τ)dτ
¸

=

Z ts

0

µZ t

0

exp (−γτ)b(τ)dτ
¶
f1(t,p)dt (4.61)

and for the case of systematic reconstruction, equation 4.60 becomes (Streicher et al., 2008 [62]):

B(p) =

Z ∞
0

µZ t

0

exp (−γτ)b(τ)dτ
¶
f1(t,p)dt

+
f∗1 (t,p)

1− f∗(t,p)

Z ∞
0

µZ t

0

exp (−γτ)b(τ)dτ
¶
f(t,p)dt (4.62)
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Sometimes it might be more accurate to use the CDF instead of the density function. In these
cases the following relationship can be used: f∗(κ,p) = κF ∗(κ,p). In summary, equations 4.58, 4.61
and 4.62 describe the three most common forms of modeling the benefit.

Loss function

The optimization of the objective function has to be made based on the expected values. Define θi as
before (i.e., the time between renewals) and Cn the discrete cost associated with an intervention (early
replacement or reconstruction). Then based on Streicher et al., 2008 [62], for systematic reconstruction,
the discounted expected damage cost can be computed as (see the Appendix for full derivation):

L(p) = E [
P∞

n=1Cn exp [−γ
Pn

k=1 θk]]

=
C1E[ exp (−γθ1)]
1−E[ exp (−γθ)] +

−C1E[ exp (−γθ1)]E[ exp (−γθ)]
1−E[ exp (−γθ)] (4.63)

+
E[ exp (−γθ1)]CnE[ exp (−γθ)]

1−E[ exp (−γθ)]
where θ is the time between any two interventions and Cn is the cost associated with the intervention

in cycle n, which may include reconstruction and repair. The expected values in equation 4.63 can be
computed as:

E[ exp (−γθ1) =

Z ∞
0

exp (−γt)f1(t,u)dt = f∗1(t,u) (4.64)

E[ exp (−γθ) =

Z ∞
0

exp (−γt)f(t,u)dt = f
∗
(t,u) (4.65)

which describe the Laplace transform of the densities of the time to the first intervention and between
any two interventions respectively. For the modified renewal and the case of systematic reconstruction,
the cost of losses can be written as:

L(p) =
C1f

∗
1 (t,p)

1− f∗(t,p)
+
−C1f∗1 (t,p)f

∗
(t,p)

1− f∗(t,p)
+

f∗1 (t,p)Cnf
∗(t,p)

1− f∗(t,p)
(4.66)

=
f∗1 (t,p)

1− f∗(t,p)
[C1 +−C1f∗(t,p) + Cnf

∗(t,p)]

When convenient, the cost Cn can be extended to include loss of business and compensation cost
as a result of risk to human life.

4.7.2 Objective function for optimization

Based on the discussion presented in previous sections, the objective function for optimization will
be defined for the following cases: 1) structures abandoned after failure or at a fixed time ts; and 2)
structures systematically reconstructed after any intervention. For the first case, the objective function
for the modified renewal process is:

Z(p) = B(p)− C(p)− [C1 + (−C1f∗(t,p) + Cnf
∗(t,p))]

f∗1 (t,p)

1− f∗(t,p)
(4.67)

Note note that for systems that have been in operation for a long time or for systematically
renewed structures C1 = Cn = CL and, therefore, the last two terms in equation 4.66 cancel leading
to: L(p)= C1f

∗
1 (t,p)/1− f∗(t,p) and

Z(p) = B(p)− C(p)− CL
f∗1 (t,p)

1− f∗(t,p)
(4.68)

The function of B(p) can be selected from equations 4.58, 4.61 and 4.62 based on the modeling
requirements.
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4.7.3 Discounting aspects

Any investment decision about the project has to be made at time t = 0; in other words, all future
investments have to be discounted. Discounting costs throughout the project’s life-cycle is used to
compute the Net Present Value (NPV). In order to compute the NPV, all costs have to be discounted
by using a continuous discount function: δ(t) = exp(−γt); where γ is the interest rate and t the time
in suitable units. Note that for small values of γ this expression is similar to δ(t) = (1 + γ0)−t, which
is widely used, and where γ0 is the yearly discount rate.
Selection of discount rates for infrastructure systems is a matter of ongoing debate. A broader

approach suggests that they should be chosen to reflect how society becomes wealthier; therefore,
they should be calculated as the long term average of the economic growth per capita. In this case,
values vary between 0.9% (Africa) and 2.5% (USA and Canada) (Rackwitz et. al., 2005 [56]). In
industrialized countries interest rates vary between 2% and 8%, while in moderate and low developed
countries interest rates may vary from 8% to 18% and from 15% to 30% respectively. Wen and Kang,
2001 [71], states that for the public sector these rates are between 4% and 6%, while for the private
sector, they vary between 6% and 10%. Other related issues that are beyond the scope of this paper
but that must be addressed are the variation of discount rates with time (see, Rackwitz et. al., 2005
[56]) and the discount rates for the loss of human lives (Pate-Cornell, 1984 [51], Johansson, 2001 [32]
and Bayer, 2003 [9]). An interesting discussion on public and private discounting for life-cycle cost
analysis can be found in Corotis, 2005 [16].

4.7.4 Illustrative example

Consider the information and the data discussed in the illustrative examples throughout this document.
The cost optimization data used in the example are as follows: the benefit obtained from the system
operation is assumed to be constant b = 0.15× C0; the part of the construction cost (independent of
the target parameters) is C0 = 3×106; and the construction cost as a function of the design parameter
is C(p) = C0 +C1 · pβ , with β = 1.1. In case of failure, it was initially assumed that for low threshold
operational conditions, i.e., s∗ < 25, the cost of failure (structural reconstruction) is C(p); however,
in addition to reconstruction costs, an additional constant cost associated to indirect losses (loss of
business opportunity, life loss compensation, etc.) was taken as L = 15 · C0. Finally, a time invariant
annual discount rate γ = 0.05 was assumed. All costs are assumed to be in appropriate currency units.
The structure is subject only to multiple shocks (progressive deterioration is not considered) with the
stochastic characteristics described in previous examples.
The optimization will focus on determining the value of the mean initial remaining life for which

the structure has to be designed to maximize the profit. This can be expressed as:

max Z(p) = B(p)− C(p)− CL
f∗1 (t,p)
1−f∗(t,p)

Subject to: Z(p) ≥ 0;
p ≥ s∗ = 25

(4.69)

where CL = C(p) + 15 · C0. It is assumed also that f∗1 (t, p) = f∗(t, p). The components of the
objective function are shown in Figure 4.13a. The optimization yields to a popt = 116.01. As expected
the optimum value varies depending upon the selection of the threshold that defines the need for
an intervention, i.e., s∗; Figure 4.13b presents the variation of the optimum solution, i.e., popt(s∗).
Large threshold values imply higher operational standards. In every case the relationship between the
optimum and the threshold changes and varies between 2 ≤ popt/s

∗ ≤ 10 for threshold values between
10 and 90.
Consider now, for comparison purposes, the case of a system exposed to multiple shocks where

damage does not accumulate with time. Then shocks occur randomly in time but at every shock the
system might fail or not. It it does not fail, it is assumed that the remaining life remains as in its initial
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Figure 4.13: a) Basic optimization components; and b) optimum design values for different intervention
thresholds.

condition. In this case, the cumulative distribution function of the time to failure can be computed as:

P (V (t) ≤ s∗, t) =
∞X
n=0

nX
i=1

£
Pf (p, s

∗)(1− Pf (p, s
∗))i−1

¤
P (N = n, t) (4.70)

where Pf (p, s) is the probability that the remaining life falls below a predefined threshold s∗. The
condition on time is removed in the objective function by computing the Laplace transform. Comparing
the cases of damage accumulation and not accumulation, it is observed that for the former case larger
optimum values are obtained (Figure 4.14). It is justified by the increase in probability of failure with
time as damage accumulates. This indicates that a renewal model that considers the case of failure or
not-failure at every shock will always underestimate the optimum.
Consider now the case where the cost of a loss is conditioned on the threshold defining the need

for an intervention and, if an intervention is required, on the level of damage. Under this assumption,
the cost of an intervention is redefined as:

CL(p, x) =

⎧⎨⎩ Co + C1p
β x ≤ Smin

ϕCo + C1x
β s∗≥ x > Smin

0 x > s∗

⎫⎬⎭ (4.71)

where ϕ > 0 and β > 0 are constants, and x is the remaining life after the event that causes the
intervention. In this case, a new threshold value Smin has been defined as the level of damage (loss of
remaining life) below which the intervention requires total reconstruction. For this intervention model
the optimum values are reduced significantly since not all interventions will cost the same nor have the
same probability of occurrence. For instance for a value of Smin = 10 and s∗ = 40 the optimum for
the three cases discussed are: 130.71 (multiple shocks and degradation), 113.04 (multiple shocks and
no degradation) and 68.6 (multiple shocks and degradation).
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Figure 4.14: Comparison of the models (a) with and (b) without damage accumulation.
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Chapter 5

Summary and conclusions

This research is directed to model the performance of infrastructure network systems when they are
exposed to the presence of both internal and external demands. The first part of this reports deals the
problem of network modeling by assessing the performance of the entire system. The second part is
related to the loss of operational capacity of individual components with time.
A systems approach to modeling infrastructure networks exposed to different hazards is presented

in the first part of this document (Chapters 2 and 3). The model combines systems thinking with
strategies for network clustering. Networks are described by a hierarchical structure that is obtained
after successive clustering. The hierarchical structure is used to make estimations of the impact of any
event on the system, allowing loss estimations and measurements of the hazard impact that can go
beyond direct damage evaluation. The practical application of the model is illustrated by using the
transportation network of Texas as a case study. Several fictitious hazard events illustrate the model
and the potential application in practice. In addition, the impact of Hurricane Ike on the network
was also studied. Estimations of population affected and productivity losses were made based on the
network structure. The proposed model is a tool that can be used to make estimations of both direct
and indirect losses. However, the main advantage of the model is its potential to estimate indirect
losses which are strongly related with the emergent properties of the network (connectivity, flow, etc.)
and not to the direct physical response to the event.
In the second part of the document (Chapter 4), a probabilistic model of structural deterioration

was developed to model the performance of network components subject to several demand types.
The model can be used to characterize the performance of structures that deteriorate as a consequence
of both sudden events, i.e., shocks (e.g., earthquakes, terrorist attacks, accidents) and progressive
degradation (biodegradation, sulfur attack, corrosion, fatigue). The model describes the system’s
performance in terms of its remaining life, which in practice would describe structural properties such
as a structure inter-story drift or maximum displacement, resistance or safety availability. It takes
into account both the accumulation of damage as a consequence of successive shocks and progressive
deterioration. Shocks are modeled as independent events that occur randomly in time whose size are
also random, and which are described by a probability distribution. Progressive deterioration was first
modeled as a deterministic continuous function. Afterwards, randomness was included by modeling it
as successive small shocks distributed according to a deterministic function. In addition to providing
the means to compute the system’s failure probability, the model provides the basis for modeling
and defining preventive maintenance strategies. For instance, it provides flexibility to define different
damage limit states that define intervention levels. The results of the illustrative examples presented
and discussed stress the importance of taking into account the accumulation of damage caused by
both shocks and progressive deterioration on the probability of failure. Results also show that the
probability of failure can be significantly high if these progressive failure mechanisms are considered.

61



62



Bibliography

[1] Agarwal J., Blockley D.I. and Woodman N. (2003), Vulnerability of structural systems. Structural
Safety 25, 263-268.

[2] Aiello W. Chung F. and Lu L.(2000), A random graph model for massive graphs. In Proc of the
32nd Annual ACM Symposium on Theory of Computing, Association of Computing Machinery,
New York, 171-180.

[3] Alpert C.J. and Kahng A.B. (1994), Multiway partitioning via spacefilling curves and dynamic
programming. In Proc of the 31st ACM/IEEE Design Automation Conference, ACM New York,
NY, USA, 652-657.

[4] Alpert C.J., Kahng A.B. and Yao S-Z. (1999), Spectral partitioning with multiple eigen vectors.
Discrete Applied Mathematics, 90, 3-26.

[5] Aven T.J. and Jansen U. (1999), Stochastic Models in Reliability. Applications of Mathematics:
Stochastic Modeling and Applied Probability Series 41, Springer.

[6] Barlow R.E. and Poschan F. (1965), Mathematical Theory of Reliability. Wiley, New York.

[7] Bremaud P. (1981), Point Processes and Queues. Spring Verlag, New York.

[8] Barnes E.R. (1982), An algorithm for partitioning the nodes of a graph. SIAM J. Alg. Disc. Math.,
3, 541-549.

[9] Bayer S. (2003), Generation-adjusted discounting in long-term decision-making. Intl. J. Sustain-
ability Development, 6(1), 133-49.

[10] Blockley D.I. and Godfrey P. (2000), Do it differently: systems for rethinking construction.
Thomas Telford, London.

[11] Chang P.K., Schlang M.D.F. and Zien J. (1994), Spectral k-way ratio cut partitioning and clus-
tering. IEEE Transactions CAD, 1088-1096.

[12] Cinlar E. (1975), Introduction to stochastic processes. Prentice Hall Inc, New Jersey.

[13] Cinlar E., Bazant Z.P. and Osman E. (1977), Stochastic process for extrapolating concrete creep.
Journal of the Engineering Mechanics Division, 103 (EM6), 1069—1088.

[14] Clauset A., Moore C., and Newman M. (2006), Structural inference of hierarchies in networks.
Proc. Workshop on Statistical Network Analysis, 23rd International Conference on Machine Learn-
ing (ICML ’06). Lecture Notes in Computer Science 4503, 1—13.

[15] Cohen R., Erez K., Ben-Avraham D. and Havlin S. (2000), Resilience of the internet to random
breakdowns. Phys. Rev. Lett., 85, 4626-4628.

63



[16] Corotis R.B. (2005), Public versus private discounting for life-cycle cost. In Safety and Reliabil-
ity of Engineering Systems and Structures: Proceedings of the 9th International Conference on
Structural Safety and Reliability (ICOSSAR’05). Millpress, Rotterdam, The Netherlands, 249.

[17] Dhillon I.S., Guan Y. and Kulis B. (2004), Kernel k-means spectral clustering and normalized
cuts. In Proc of the tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining KDD’04, Seattle Washington, USA, 551-556.

[18] Dueñas-Osorio L, Craig J.I. and Goodno B.J. (2007), Seismic response of critical interdependent
networks. Earthquake Eng. Struct. Dyn., 36, 285—306.

[19] Ellingwood B.R. and Mori Y. (1993), Probabilistic methods for condition assessment, life predic-
tion of concrete structures in nuclear power plants. Nuclear Engineering and Design, 142, 155—166.

[20] Federal Reserve Bank of Dallas (FRBD) (2008), http://www.dallasfed.org.

[21] Feldman R.M. (1976), Optimal replacement with semi-Markov shock models. Journal of Applied
Probability, 13, 108-117.

[22] Feldman R.M. (1977), Optimal replacement for systems governed by Markov additive shock
processes. Annals of Probability, 5, 413-429.

[23] Feldman R.M. (1977), Optimal replacement with semi-Markov shock models using discounted
costs. Mathematical Operations Research, 2, 78-90.

[24] Frangopol D.M., Kallen M-J. and Noortwijk M. (2004), Probabilistic models for life-cycle perfor-
mance of deteriorating structures: review and future directions. Steel Construction Prog. Struct.
Engng Materials, 6, 197-212.

[25] Gopal S. and Majidzadeh K. (1991), Application of Markov decision process to level of service
based maintenance systems. Transportation Research Record, 1304.

[26] Guillaumot V.M., Durango P.L. and Madanat S. (2003), Adaptive optimization of infrastructure
maintenance and inspection decisions under performance model uncertainty. J. Infrastruct. Syst.,
ASCE, 9(4), 133-139.

[27] Hadley S.W., Mark B.L. and Vannelli A. (1992), An efficient eigen vector approach to finding
netlist partitions. IEEE Transactions CAD 11, 885-892.

[28] Harper W., Lam J., Al-Salloum A., Al-Sayyari S., Al-Theneyan S., Ilves G. and Majidzadeh K.
(1990), Stochastic optimization subsystem of a network-level bridge management system. Trans-
portation Research Record, 1268, 68-74.

[29] Hasofer A.M. (1974), Design for infrequent overloads. Earthquake Engineering and Structural
Dynamics, 2(4), 387-8.

[30] Holme P., Kim B.J., Yoon C.N. and Han S.K. (2002), Attack vulnerability of complex networks.
Physical Review E., 65, 056109.

[31] Jiang W. and Xilia L. (2005), Prediction of structural performance and life-cycle analysis based on
Bayesian dynamic models. In Safety and Reliability of Engineering Systems and Structures: Pro-
ceedings of the 9th International Conference on Structural Safety and Reliability (ICOSSAR’05),
Millpress, Rotterdam, The Netherlands, 1679-1686.

[32] Johansson P.O. (2001), Is there a meaningful definition of the value of statistical life? Health
Economics, 20, 131-139.

64



[33] Kanungo T., Mount D.M., Netanyahu N.S., Piatko C.D., Silverman R. and Wu A.Y. (2002),
An efficient k-means clustering algorithm: analysis and implementation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24 (7), 881-892.

[34] Kleiner Y. (2001), Scheduling inspection, renewal of large infrastructure assets. Journal of In-
frastructure Systems, 7(4), 136—143.

[35] Kubler O. and Faber M.H. (2003), Optimal design of infrastructure facilities subject to deteriora-
tion. In Proc of International Conference on Applied Statistic and Probability in Civil Engineering,
ICASP’03, Millpress Science Publishers, San Francisco, 1031-1039.

[36] Klutke G-A. and Yang Y. (2002), The availability of inspected systems subject to shocks and
graceful degradation. IEEE Transactions on Reliability, 51(3), 371-374.

[37] Konak, A., Smith A.E., and Kulturel-Konak, S. (2004), New Event-driven Sampling Techniques
for Network Reliability Estimation. In Proc of Winter Simulation Conference 2004, Washington,
D.C., 224-231.

[38] Lattimore B.S.,Van Dongen S. and Crabbe M.J. (2005), GeneMCL in microarray analysis. Com-
putational Biology and Chemistry, 29(5), 354-359.

[39] Liu Y. and Weyers R.E. (1998), Modeling the time-to-corrosion cracking of the cover concrete in
chloride contaminated reinforced concrete structures. ACI Materials Journal 95, 675-81.

[40] McQueen J. (1968), Some methods for classification and analysis of multivariate observations.
Computer and Chemistry, 4, 257-272.

[41] Mander J.B., Dhakal R.P., Mashiko N. and Solberg K.M. (2007), Incremental dynamic analysis
applied to seismic financial risk assessment of bridges. Engineering Structures, 29(10), 2662-2672.

[42] Mishalani R.G. and Madanat S. M. (2002), Computation of infrastructure transition probabilities
using stochastic duration models. Journal of Infrastructure Systems, 8(4), 139—148.

[43] Mori Y. and Ellingwood B. (1994), Maintaining reliability of concrete structures. I: role of inspec-
tion and repair. ASCE Journal of Structural Engineering, 120(3), 824-825.

[44] Nakagawa T. (1976), On a replacement problem of cumulative damage model. Operational Re-
search Quarterly, 27(4), 895-900.

[45] Newman M.E.J. (2003), The structure and function of complex networks. Society for Industrial
and Applied Mathematics (SIAM) Review, 45(2), 167-256.

[46] Newman M.E.J. (2004), Detecting community structure in networks. Eur. Phys. J., 38, 321—330.

[47] Newman M.E.J. and Leicht E.A. (2007), Mixture models and exploratory analysis in networks.
PNAS, 104 (23), 9564-9569.

[48] Ng, A., Jordan, M., Weiss, Y. (2002). On spectral clustering: analysis and an algorithm. In
Advances in Neural Information Processing Systems 14, MIT Press, Cambridge, 849- 856.

[49] Onoufriou T. and Frangopol D.M. (2002), Reliability-based inspection of complex structures: a
brief retrospective. Computers and Structures, 80, 1133-1144.

[50] Pandey, M.D. (1998), Probabilistic models for condition assessment of oil and gas pipelines. Int.
J. Non-Destructive Testing and Evaluation, 31(5), 349-358.

[51] Paté-Cornell M.E. (1984), Discounting risk analysis: capital versus human safety. In Proc Symp
on Structural Technology and Risk. University of Waterloo Press, Waterloo, ON, Canada, 17-20.

65



[52] Peng J. and Xia Y. (2005), A new theoretical framework for k-means-type clustering, StudFuzz,
180, 79—96.

[53] Pentney W. and Meila M. (2005), Spectral clustering of biological sequence data. In Proc of
the 25th Annual Conference of the American Association for Artificial Intelligence (AAAI), 1,
845—850.

[54] Petcherdchoo A., Kong J.S., Frangopol D.M. and Neves L.C. (2004), NLCADS (new life-cycle
analysis of deteriorating structures) user’s manual. Structural Engineering and Structural Me-
chanics Research Series No. CU/SR-04/3, Department of Civil, Environmental, and Architectural
Engineering, University of Colorado, Boulder 04/3, 63.

[55] Rackwitz R. (2000), Optimization - the basis for code making and reliability verification. Struc-
tural Safety, 22, 27-60.

[56] Rackwitz R., Lentz A. and Faber M. (2005), Socioeconomically sustainable civil engineering in-
frastructures by optimization. Structural Safety 27:187-229.

[57] Rendel F. and Wolkovicz H. (1995), A projection technique for partitioning nodes of a graph.
Annual Operations Research, 58, 155-179.

[58] Rosemblueth E. and Mendoza E. (1971), Optimization in isostatic structures. J. Eng. Mech. Div.,
ASCE, (EM6) 1625-42.

[59] Rosemblueth E. (1976), Optimum design for infrequent disturbances. J. Struct. Div., ASCE, 102,
(ST9) 1807-25.

[60] Ross S.M.(1996), Stochastic processes. 2nd Edition, Wiley.

[61] Scott J. (2000), Social network analysis: a handbook. 2nd Ed. Sage, London,

[62] Streicher H., Joanni A. and Rackwitz R. (2008), Cost-benefit optimization and risk acceptability
for existing, aging but maintained structures. Structural Safety, 30, 375-393.

[63] Sherif Y. and Smith M. (1981), Optimal maintenance models for systems subject to failure - a
review. Naval Research Logistics Quarterly, 28, 47-74.

[64] Taylor H.M. (1975), Optimal replacement under additive damage and other failure models. Naval
Research Logistics Quarterly, 22, 1-18.

[65] Val D. and Stewart M. (2005), Decision analysis for deteriorating structures. Reliability Engineer-
ing & System Safety, 87, 377-385.

[66] Valdez-Flores C. and Feldman R.M. (1989), A survey of preventive maintenance models for sto-
chastically deteriorating single unit systems. Naval Research Logistics Quarterly, 419-446.

[67] Van Dongen S. (2000), Graph clustering by flow simulation. PhD thesis, University of Utrecht.

[68] Van Dongen S. (2000), A cluster algorithm for graphs. Technical Report INS-R0010, National
Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May.

[69] Van Dongen S. (2000), A stochastic uncoupling process for graphs. Technical Report INS-R0011,
National Research Institute for Mathematics and Computer Science in the Netherlands, Amster-
dam.

[70] Wasserman S. and Faust K. (1994), Social network analysis. Cambridge University Press, Cam-
bridge.

66



[71] Wen Y.K. and Kang Y.J. (2001), Minimum building life-cycle cost design criteria. I: methodology.
ASCE J. of Structural Engineering, 127(3), 330-337.

[72] Zuckerman D. (1977), Replacement models under additive damage. Naval Research Logistics
Quarterly, 24, 549-558.

67



68



Chapter 6

Appendix

6.1 Benefit function
Derivation of the equation to estimate losses after Streicher et al., 2008 [62]. Let’s define θi = ti− ti−1
to be the time between renewals with density f(t,p). Then, the total benefit is

B(p) = E

" ∞X
i=1

Ã
exp

h
−γ

Pi
k=1 θk

i Z θi

0

exp (−γτ)b(τ)dτ
!#

= E

"Z θ1

0

exp (−γτ)b(τ)dτ
#
+E
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i=2

i−1Y
k=2

Ã
exp [−γθk]

Z θi
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#
+E[exp (−γθ1)]
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E[exp [−γθ]]i−2E
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exp (−γτ)b(τ)dτ
#
+

E[ exp (−γθ1)]E
hR θ
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exp (−γτ)b(τ)dτ

i
1−E[ exp (−γθ)] (6.1)

Note that the derivation uses the following known relationship:
P∞

n=k aq
n−k = a/(1 − q) for

k <∞. Since it is sometimes more accurate to use the CDF, i.e., F (t,p) =
R t
0
f(τ ,p)dτ instead of the

density function, the integration theorem for Laplace transforms can be used when necessary; this is,
F ∗(κ,p) =

R∞
0
exp(−κt)f(t,p)dt = f∗(κ,p)

κ , which leads to f∗(κ,p) = κF ∗(κ,p).
For the case of systematic reconstruction, equation 4.60 can be simplified to (Streicher et al., 2008

[62]):

B(p) =

Z ∞
0

µZ t

0

exp (−γτ)b(τ)dτ
¶
f1(t,p)dt

+
f∗1 (t,p)

1− f∗(t,p)

Z ∞
0

µZ t

0

exp (−γτ)b(τ)dτ
¶
f(t,p)dt (6.2)

and for the case where the structure is abandoned after first failure or at a finite service time ts
(Streicher et al., 2008 [62]),

B(p) = E

∙Z t
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exp (−γτ)b(τ)dτ
¸
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0

µZ t
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6.2 Loss function
Let’s define θi as before (i.e., the time between renewals) and Cn the discrete cost associated to an
intervention (early replacement or reconstruction). Then, based on Streicher et al., 2008 [62], for
systematic reconstruction the discounted expected damage cost can be computed as:

L(p) = E

" ∞X
n=1

Cn exp

"
−γ

nX
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##

= E[C1 exp (−γθ1)] +E
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where θ and Cn are the time and cost between any two interventions.
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