

Logistics for Public Freight Planners: Theory and Practice

Bruce Wang, Ph.D. Zachry Department of Civil Engineering Texas A&M University March 2009

Outline

- Background
- Introduction to Supply Chain and Logistics
- Topic Areas
 - Supply Chain Strategies
 - Network Design and Facility Location
 - Procurement and Outsourcing
 - IT and Logistics
- Summary
- Online GIS Tool for Truck Parking Study

Background

- Continued growth in freight traffic
- Logistics and freight planning
- Freight planners lack of logistics background
- Mississippi Valley Freight Coalition Project
 - Online course
 - Team: Teresa Adams, Bruce Wang and Ernie Wittwer

Course Outline

Part One

- Introduction and total cost competition
- Managing inventories
- Managing transportation
- The European experience and conclusions

Part Two

- Logistics strategies
- Network design
- Outsourcing and third party logistics
- Information technology
- Summary

Growth in Ton-Miles

Zachry Department of
CIVIL ENGINEERING
TEXAS A&M*ENGINEERING

2020 Congestion: A Challenge to Public Freight Planners

TEXAS A&M

Modal Share Trends

Obstacles to Modal Diversion

Market	Institutional	Public
Viability	Readiness	Barriers
 Equivalent	 Capacity Capital Institutional	 Public
Services Access	Commitment Institutional	acceptance Competitive
limitations Interoperability Density	structure	reckoning

Truck Rail Intermodal

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Supply Chain Management

- Encompasses the planning and management of all activities involved in sourcing and procurement, conversion, and all logistics management activities
- It also includes coordination and collaboration with channel partners, which can be suppliers, intermediaries, third party service providers, and customers

Logistics Management

- The part of supply chain management that plans, implements, and controls the efficient, effective forward and reverse flow and storage of goods, services and related information between the point of origin and the point of consumption in order to meet customers' requirements
- Logistics is part of the supply chain management concerning materials movement and storage

Factors in Logistics

- Cost reduction
- Inventory and service
 - Commodity characteristics, markets and service needs
- Service and mode choice
- Corridor density and transportation availability
 Truck-rail intermodal constraints

• Capital

- Shrinkage
- Uncertainty
- Obsolescence

The T-Shirt

Cyclical Inventory

Zachry Department of
CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Trade-off Considerations

- Unit purchase price
- Fixed ordering costs
- Holding costs
 - Capital
 - Storage
 - Shrinkage, loss, damage, obsolescence

Safety Stock

Issues in Safety Stock

- Uncertainty in demand
- Uncertainty in delivery

- Cost of holding
- Cost of administration

Implications for Freight

- Reliability
- Timed arrivals
- More frequent delivery
- More truck-reliant
- More complex congestion solutions

Several Topic Areas

Supply Chain Strategies

Objectives of Supply Chain Strategies

To reduce total cost through

- Reducing the time from manufacturing to consumption, reduce redundant inventory in the supply chain;
- Facilitating smooth flow of products, raw materials, finance, information, technology between parties through partnership and cooperation;
 - Improving system integration and system resiliency.

Logistics Cost as a Percentage of GDP

Country	GDP %
USA	10.5
Canada	12
UK	10.63
Denmark	12.88
Ireland	14.26
Spain	11.52
Hong Kong	13.71
Japan	11.37

Source: Financial Times, December 1998

ĀМ

Logistics Cost Breakdown in USA

Cost	Percentage
Transport	46
Storage/Warehousing	
	22
Inventory Carrying	22
administration	10

Cited in the Handbook of Logistics and Distribution Management. Source: Financial Times, December 1998.

Cost Itemization as a Percentage of Final Sales Turnover

ĀМ

Main Business	Transport	Warehousing/	Inventory	Administration	Overall	
	Cost	Depot	Holding			
Office Equipment	3.2	10.7	0.87		14.77	
Health Supply	1.36	9.77	0.66	0.19	11.98	
Beer	8.16	2.82	0.56	2.19	13.74	
fashion	0.38	1.31	0.33		2.02	
Cement	25.2	9.1	7.1	4.6	46	
Auto Parts	2.07	6.35	1.53		9.96	
Computer Supply	0.65	0.78	0.09		1.52	

Source: Benchmark Survey of UK Companies by Dialog Consultants Ltd. Cited in Handbook of Logistics and Distribution Management by Rushton, Oxley and Croucher, 2000.

Inventory Policies

- Continuous Review
- Periodic Review
- (s, S) Ordering Policy
- Economic Order Quantity (EOQ) Model Most Basic Model

$$Q^* = \sqrt{\frac{2KD}{h}}$$

D = Demand; K = fixed ordering cost; h = inventory carrying cost

Time Reliability (Lead Time Variance) to Optimal Inventory Cost (B)

TEXAS A&M

ĀМ

Standard Deviation	Re-order Point	Inventory increase
(in days)	(units)	
2	179	0.78%
3	183	1.72%
4	188	2.97%
5	194	4.49%
6	202	6.23%
7	210	8.14%
8	219	10.20%
9	228	12.38%

Note: order quantity remains the same. Assume a lead time of 2 weeks.

Source: Formula from Designing and Managing the Supply Chain by Simchi-Levi, etc.

Lead Time Duration to Inventory

Cost

ĀМ

New Lead	Demand During	Safety Stock	Re-order	Average	
				Inventory	
Time (day)	Lead Time		Point	Change	
24	153	113	266	6.26%	
23	146	110	257	5.70%	
22	140	108	248	5.13%	
21	134	106	239	4.55%	
20	127	103	230	3.95%	
19	121	100	221	3.34%	
18	115	98	212	2.71%	
17	108	95	203	2.06%	
16	102	92	194	1.40%	
15	96	89	185	0.71%	
14	89	86	175	0.00%	
13	83	83	166	-0.74%	
12	76	80	156	-1.50%	
11	70	76	146	-2.30%	
10	64	73	137	-3.14%	

Pull vs Push Systems

TEXAS A&M

Source: http://elsmar.com/Pull_Systems/. Accessed on September 10, 2007

Push vs. Pull systems

Source: Designing and Managing the Supply Chain by Simchi Levi et al. 2000

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Vendor Managed Inventory (VMI) System

Under VMI, instead of the customer monitoring its sales and inventory for the purpose of triggering replenishment orders, the vendor assumes responsibility for these activities

Assemble-to-order system

- Components ordered
- Product not assembled until order arrives
- Application condition
 - Plethora of products sharing the same set of components with different configurations.
 - Demand for each product is uncertain
 - Examples
 - PC Industry
 - Stain mixture

Just-In-Time System

- JIT demands timely, but not too early, supply of needed materials for production in just the right quantity.
- It views inventory as a cost and redundant
- Inventory needed is reduced to the minimum
- It imposes high standard onto products quality (no backup in the inventory!)

Logistics Network Design and Facility Location

Multi-echelon System

An assemble system

Multi-echelon System: An Example of Distribution

ĀМ

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Illustrative Distribution Network

Example Logistics Network

Factors Affecting Logistics Network Design

Strategic factors

TEXAS A&M

Ā M

- Technological factors
- Macroeconomic factors
- Exchange rate and demand risk
- Political factors
- Infrastructure factors
- Competitive factors
- Customer response time and local presence
- Logistics and facility cost

Example: Demographic Shift

Zachry Department of
CIVIL ENGINEERING TEXAS A&M*ENGINEERING

TEXAS A&M

Procurement and Outsourcing

Dreamliner Assembly

Results of Sourcing/Outsourcing

- More business exchanges
- Closer relationship between businesses
- Expedited globalization
- Question: Does this mean more reliance on transportation?

Information Technology and Logistics

Information Technology

Information must be *accurate, accessible in a timely manner and of the right kind* in order to be useful.

Information Flow on a Supply Chain

Strategic network design

ΤΕΧΑЅ Α&Μ

This layer decides the optimal number of facilities (manufacturing plants, warehouses, distribution centers), their locations, outsourcing strategies and best distribution channel, etc. These decisions lay the ground for the general cost picture of operations.

Supply chain master planning

This layer of decision is made on a weekly to monthly schedule in order to coordinate production, distribution strategies, and storage requirements by efficiently allocating supply chain resources to maximize profit or minimize system wide cost.

Operational planning

These systems enable efficiencies in production, distribution, inventory and transportation for short term planning. The planning horizon is typically from daily to weekly. This layer includes typically four factors: demand planning, production scheduling, inventory management, and transportation planning.

Operational execution

This system generally provides the data, transaction processing, user access, and infrastructure for running a company. It includes five factors: enterprise resource planning, customer relationship management, supplier relationship management, supply chain management and transportation management.

IT Examples: RFID

GPS

Source: www.howstuffworks.com

Photo courtesy <u>U.S. Department of Defense</u>

- Automated Decision Support System
- Input

ĀМ

- Available resources (vehicles, drivers, connectivity between locations, etc.)
- Demand
- Constraints: drivers working hours, weight limit, road restrictions, etc.
- Output
 - Work schedules (where to go, at what time and on which route)

Concluding Remarks

Public vs Private Sectors Planning and Implementation

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Public and Private Sector Planning

Source: http://www.fhwa.dot.gov/freightplanning/caldwell.htm

Differences in Planning Perspectives

Source: http://www.fhwa.dot.gov/freightplanning/caldwell.htm

Truck Parking Study In the Upper Midwest Region

- Survey for Truck Parking Problems
 - Truckers and other stakeholders can mark locations and answer location specific questions
- Result Display